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THE GENERAL THEORY OF BLADE SCREWS.

• . ,

INTRODUCTION.

The present theory gives a complete picture and an exact quantitative analysis of the
whole phenomenon of the working of the blade screw. _ This theory not only includes all eases
of applications of blade screws, but also unites in a continuous whole the entire scale of states
of work conceivable for a blade screw.

For the study of the phenomenon of the working of blade screws, I adopt as fundamental
parameter a quantity which I call relative pitch. The relative pitch is the pitch of the trajectory
of a section of the screw blade, measured by taking the pitch of the blade section itself as unity.
[ call specific function the ratio of the thrust power to the torque power of the blade screw.
The curve of the specific function, as shown in the annexed illustration, 2 unfolds the com-
plete cycle of all the states of the work possible for a screw. For negative values, great in
absolute value, of the relative pitch, the specific function is dh'ected toward the origin of the
coordinates by a sensibly rectilinear parabolic bram.h. Here we find ourselves in the region
of the screw working as a brake, characterized by the property that the fluid stream crossing
the area swept by the blades of the screw has the same sense as the velocity of the fluid
current directed on the screw. _ae segment of this branch of the specific function which
is close to the origin and is indicated by dots on the annexed drawing corresponds to a
phenomenon discovered in a purely "analytical manner, for the first time, by the present
theory, which I have named the vortez ring working state. This phenomenon takes place in
the following order: One imagines the screw working in the above-mentioned brake state and
considers the progressive !essening of its translational speed• Under these conditions _ moment
arrives when a surface of separation is formed in the wake of the screw across which there is
uo fluid flow. Directly after its formation the surface of separation resolves itself into two

surfaces; and a vortex ring, the axis of which coincides with the axis of the screw, appears in
the space thus formed. The two surfaces of separation which inclose the vortex ring move
progressively apart, and a moment arrives when one of these surfaces crosses the space swept
by the blades of the screw. This moment corresponds to the change of sense of the fluid stream
crossing the plane, of the screw, and at that moment the screw tends to make an infinite number
of revolutions. The curve of the specific function reaches the origin by a cusp. This is
the whirling phenomenon, a immediately followed by a new brake state of work represented
by i_ loop on the curve of the specific function. This latter state of brake work is terminated
by the .work of the screw at a fixed point, when the specific function once more reaches
the origin. The- blade screw fulfills then the functions of a ventilator, a helicoidal pump or a
helicopter. When we enter the region _ positive -ralues of the relative pitch, the screw

• _The author allows himself to introduce the term "blade screw" as general designation of any kind of screw fitted with blades.
z See also figureA, p. 40.
a The whirling phenomenon is olten observed in the braking of ships by means of the screw. There is a moment when a sudden jerk on the

engines is observed, and the engines themselves tend to acCelerate. In practical navigation this phenomenon ha8 been considered as accidental.
It is. however, a quite regular phenomenon, which detect,_the moment of change in the direction of the stream of water flowin_across the screw.
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becomes propulsive and the specific function represents the efficie_my of the propeller. ._fter
having passed a maximum, the specific function decreases rapidly, and, passing through zero
value, brings us to a short interval of breakage, which asymptotically goes over to the turbine
work of the screw. In this latter interval the specific function represents the inverse of the
efficiency of the turbo-motor. After having passed a minimum which corresponds to the
maximum of the turbo-motor efficiency, the specific function, by a parabolic branch, quasi-
rectilinear, disappears into infinity, which corresponds to the stoppage of the screw in a current
directed on the screw. All this sequence of phenome, na corresponds to the rotation of the
screw in one sense. By the rotation of the screw in an inverse sense, we obtain the series of
phenomena of reverse rotation, which forms, as it were, the reflected image of the phefiomena
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of d_ect rotation.The generR.lequationof the specificfunctionthus obtainedleadsd_ectly

to the deter_ation of the most favorableconditionsof screw working in allthe seriesof its

applications. The maxinta and minima of the specific function correspond exactly to the
maximum of efficiency of the different working states of a blade screw, separated from one
another by zero or infinite values of the specific function. We are thus naturally brought to
methods of calculation of blade screws in conditions of maximum efficiency. The system of
fundamental equations obtained by us thus shows atl the properties of the blade screws in all
the variety of their working conditions. We thus obtain a complete solution of the whole

series of those important problems which have been standing so long owing to the requirements
of practice in the applications of blade screws, and which have, up to the present, remained
without any satisfactory solution.
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I have arrived at all these results, on the one hand, by the conceptional definition of the
screw problem of which the normal working conditions are the expression, and, on the other
hand, by the employment of a method of solving hydrodynamic problems, which I call the
empirical-theoretical method. These two sides of the question are of such importance that I
must stop to examine them generally.

What is exactly meant by speaking of the exact solution of a problem _ When a new
problem is raised, before proceeding to its solution two stages should be distinguished. The
first, the most difficult to reach, is that in which the thought seeks to formulate the statement
of the question. It is only afterwards, when the problem has been formulated, that we can,
properly speaking, approach a solution. All t?ae great scientific conquests of human thought
have begun by a powerful conception of the problem to be solved. The conceptional defini-
tion of a problem is distinguished by .the fact that it is only an abstraction from the world of
our sensations, only a mental approximation to the reality of the external world. A simple
example will suffice to give point to my idea. Let us take the problem of the motion of a
rigid body. It is a well-known fact that in nature no solids exist in the absolute meaning of
mechanics. So all the mechanics of the solid is only an .approximation to reality; but the
whole value of this approximation lies in the fact that numerous natural bodies approach in
certain conditions so nearly to an absolute rigidity that the established laws of the mechanics

of solids give a description of actual solids, which, in general, exceeds all the demands of the
applied sciences. The problem once stated, an exact solution can be sought. It is only- of the
exactitude of the solution that there can be question. All problems in themselves can only

be approximations to reality. That is why we should never insist too much on finding exact
solutions of problems which present too considerable difficulties. The whole value of numerous
methods of approximation lies in the fact that the results obtained are, so to speak, of the same
degree of exactitude as the conception of the problem. Important problems remain long with-
out being solved only because their _;ery conception has not been sufficiently thought out.
The blade screw is an example of such. A more thorough conception, while making the solu-
tion easier, often brings us still nearer to reality.

The empirical-theoretical method to which I have had recourse for the solution of the
screw problem, presents a certain analogy- to the general method of solving problems of the

' theory of elasticity. At one time scientists tried to deduce the elastic prope.rties of solid bodies
starting from the hypothesis of the molecular structure of bodies. But real progress in the
theory of elasticity was only obtained when this risky method was abandoned. In order to
establish the elastic properties of solids, the modem theory of elasticity has recourse to direct
experiment, and, based on the data of this latter, it connects the complex cases with the simple
one by the help of the fundamental propositions of mechanics. This, in my opinion, is what
should be done with regard to the solution of the problem of hydrodynamic resistance. Find
out the factors which depend on the physical nature of the fluid and the surfaces in contact,
and for their numerical values fall back on direct experiment. Then from the knowledge of these
factors, once they are determined, the results which mechanics allow to be established must
be drawn. I know well all the methods which have been proposed for the solution of the

problem of hydrodYnamic resistance of fluids. These methods have all the following scheme:
First of all, by aid of some hypothesis the fundamental characteristics .of the flow around th_
solid in motion are sought. Afterwards the distribution of velocities in the fluid mass is cal-
culated. From the latter one finds the pressure distribution, the resultant of which at the
sarface of the body ought to represent the hydrodynamic resistance of the fluid. Thus Euler's
method consists in supposing the flow of the fluid to be continuous and allowing a potential
function for the fluid velocity. This conception of the phenomenon leads to the conclusion
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that all bodies immersed ill a fluid do not show any hydrodynamical resistance, which' is in
flagrant contradiction to experiment. In order to explain the phenomenon of fluid resistance,
Helmholtz has supposed the formation behind the body of Surfaces of discontinuity, to
which he had been led in studying the flow of fluids through orifices. This method has been
developed by Kirchhoff and Lord Rayleigh. The value of the hydrodynamic resistance
obtained by this method is, however, less than that furnished by experiment. The cause
of this divergence lies in the fact that this type of flow is unstable, the viscosity of the
fluid destroying the surfaces of discontinuity. Of late years W. M. Kutta/having estab-
lisi_ed, in the case of movements parallel to a plane, the relation between the circulation
over a contour embracing a cylindrical solid and its hydrodynamical resistance, tried to
determine this latter by studying some types of flow around solids, which, although
stream-lined, furnished a finite value of the circulation, around the cylinder. To-Messrs. S.

Tchapliguine and N. Joukowski 2 we owe numerous developments and applications of this
method. The authors of this theory have been able to calculate the lift furnished by the
cylindrical body, but the value obtained does not fully agree with experiment. _ks for the
drag, it escaped their _nvestigations. I have therefore endeavored to give a general demon-
stration of the theorem of circulation which explains this misunderstanding and which will
be found in Note IV at the end of this memoir. This theorem referred to above does not

furnish a zero value of the drag, and its authors arrived at this conclusion only by the fact

of supposing the fluid to be perfect, a hypothesis quite superfluous and entirely unneces-
sary for the establishment of this theorem. But this theorem, when understood in its widest
sense, does not lead to the solution of the problem of hydrodynamic resistance, since the values
obtained for the circulation depend on the type of flow assumed, which still remains to be deter-
mined. • This latter question of the type of flow is excellently stated by _f. V. Karman/who pro-
poses to determine the hydrodynamical resistance starting from the estimation of the momen-
tum of the vortices in quincunx, which are formed behind the cylindrical solid in uniform
rectilinear motion in a fluid. This theory, applied up to the present only to the most simple
cases, gives results which agree better than all the other theories with experiment. .All the
attempts enumerated above, although quite erudite, can not give us the value of the hydro-
dynamical resistance for all the cases demanded by technique, and we are always obliged to
resort to experiment for its deten_aination. How ought we to proceed when a problem of
hydrodynamical resistance bars the way to our investigations'._ It is by the empirical-theo-
retical method that I find the means of circumventing this difficulty. This method really

_onsists in reversing the question. We do not propose to calculate the hydrodynamical resist-
ance starting from the type of flow of the fluid, but, inversely, it is the flow of the fluid that

- we shall try to determine, starting with the knowledge of the hydrodynamical resistance meas-
ured experimentally. In general, the empirical-theoretical method can be characterized as
follows: _kll the space in which a hydrodynamical phenomenon takes place is divided into two
kinds of regions. In some of these regions the hydrodynamical resistances are, so to speak,
concentrated: in the others they are absent. The hydrodynamical resistances once experi-

mentally measured, the connections between the two kinds of regions are established by means
of the general theorems of mechanics and hydrodynamics, the phenomena which take place
in the second kind of region being considered as under the laws of perfect fluids.

See _'. -_f. Kutta, "Illastrirte Aoronautische Mlttellungen,:' 1902. and "81tzun_zsbericht_, der Koehiglichen Bayerisehen Akademie der _Vis-
,_.nschaften," Munich, 1910 and 1911.

s See °' L_aerodynamique/' by N Joukowski, Paris, 1916_ Ch. VI, §§ 18, 19, 20.
s _ V. K:arman.." Nachricht_n yon der l_t_mi_liehen C,csellscl_af! der Wlsscnschaften zu GSttingen/' 1911, and "Physik_lische Zeitschrift,"

i912.
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Returning after the preceding general considerations to the examination of our screw

problem, I shall begin by its definition. Like all conceptional definitions, this will only approxi-
mate reality to a certain degree. But the value of our formulation of the problem lies in the
fact that it leads us to a solution of this latter which satisfies all the demands of the technique

of the application of blade screws.
The following, in accordance with the empirical-theoretical method, is my conception of

the blade-screw problem. In order to fix the ideas, I will assume that the screw is a propeller.
I divide the slip stream created by the rotation of the blade screw into three domains. The
first is that part of the stream which is c[isposed forward of the screw and up to the section of
the stream which the local phenomena created by the rotation of the blades have not reached.
The second domain, which contains the screw, immediately follows the first and incloses that

part of the stream immediately disturbed by the rotation of the screw blades. I define this
second domain by the condition that the differences of pressures _n the two limiting sections
are actually equal to the thrust produced by the screw. The third domain is the direct pro-

longation of the second counted up to the narrowest section of the slip stream created by the
screw rotation. I assume that the flow of the fluid in the first and third domains obeys the

laws of perfect fluids, while the phenomena taking place in the second region are estimated by
direct experiment. As regards the fluid stream running out of the third region. I assume that
its velocity is progressively dissipated by the viscosity of the fluid. The above enumerated
conditions constitute what I call the normal conditions of the working of a blade scrt'w. I call

neighboring conditions all the circumstances which deviate from normal conditions.
The conception of a problem can only be judged by the conclusions to which it leads. The

results stated in this memoir will, I hope, be the most eloquent evidence in favor of our con-

ception of the screw problem. I should like to mention that it has been quite impossible for
me to deal with all the questions which my conception of the screw problem raises. I have
concentrated my efforts above all on the problems which appear to me to be the most important

for practice. Time itself, as it passesl will, no doubt, reveal, better than I may have been
able to do here, many sides of the widespread screw problem upon which I have often only
touched. In many cases I may have only raised the veil of mystery which up to the present
has concealed so je_ously from our eyes many sides of the phenomenon of the blade screw
working, and have outlined only their general picture. But. I allow myself to believe that the
results which I have obtained are fully sufficient for the exact calculation, in full certitude, of

blade screws of the highest possib!e efficiency for the states of work submitted by me to a
detailed study.

It is also to be mentioned that, strictly speaking, the blade-screw theory can only be an

integral theory, because in principle the problem of calculation of the hydrodynamical resistance
is defined by integral relations. But the present theory is rather a differential theory, in the
sense that it is based on a system of differential relations. The possibility of such a simplifica-
tion is the result of some assumptions which seem. to be so close to reality, by the results to
which they lead, that the transition to a necessarily more complicated integral _ theory is not

practically demanded.
To some it may seem that this theory contains many assumptions. But i must say that

the present theory contains fewer assumptions than any earlier theory. I have only devoted
special attention to indicate all the assumptions made, which was often neglected. And I will
also ask that one consider all the assumptions made, not so much in themselves as in the con-

sequences to which they lead.
................................................

The general outlines of _he blade-screw integral theory will be found {n Note VI at the end of this _femoir.
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I wish also to point out to those about to verify the present "theory by experiment two
circumstances which disturb, as it were, the purity of the phenomenon: on the one hand, the
deformation of the screw blades, on the other hand, the deviation of the fluid resistance from

the square law for the velocity. It often happens that when the angular velocity of the screw
increases, the blades undergo a certain distortion or flexion owing to the load to which they

are subjected. This causes a modification of the general shape of the blades, which although

generally small, has an immediate effect on the results of testing. As to the square law for the
velocity, it is well known to be only a first approximation, and can be applied only in certain
intervals of the velocity variation for which the coefficients of resistance ought to be directly
measured. When the coefficients of resistance are taken as constant in large intervals of the

velocity variation the results of the calculations raise differences which have to be attr_uted
to the deviation of the fluid resistance from the square law for the velocity.

In conclusion I shall give a general summary of the chief results obtained at this time in
this memoir.

Chapter I is devoted to the establishment of the system of fundamental equations relating
to the blade screw. The theorems of momentum and of moments of momentum are submitted
to a critical examination in their application to the screw. A complete picture of the flow of

the fluid in the slip stream created by the rotation of the screw is given. The examination of
the distribution of the pressures in this fluid stream leads to the generalization of Bernouini's
theorem shown in Note II at the end of this memoir. The reasons which make negligible the
mutual influence of the different sections of a blade are indicated. It is shown that the effective

pitch, alone, as opposed to the constructive pitch, can serve to describe the properties of the screw.
The fundamental theorem registering the losses in the work of the screw is established. The

explicit expressions of the velocities in the slip stream produced by the rotation of the screw--
which I call slip and race w.locitiesware calculated both forward of the screw and in its wake,
as functions of the dinaensions of the screw and the coefficients of resistance. Rigorous demon-

stration is given of the fact already known, but generalized by us, that the specific function is a
function of the relative pitch alone. All the general data of the empirical laws of fluid resistance
of which use is made are stated in Note III at the end of this memoir.

Chapter II contains the general discussion of the 16 states of work which may establish
themselves for a blade screw. The existence of the vortex.ring state and the whirling phenom-
enon are established. All the fundamental functions which enter the blade-screw theory are

submitted to a general analytical discussion. The general outline of the curve of the specific
function is examined. Finally. I have pointed out two limited cases of the work of the screw;
the screw with a zero constructive pitch and the screw with an infinite constructive pitch.
The consideration of the effective pitches explains the paradoxes apparently realized by these
cases:

Chapter III is devoted to the study of the propulsive screw or propeller. I give, first of all,
a comparative summary of the general formulm for the working of the screw when advancing
and when standing at a fixed point.. I establish the fundamental proposition that when a screw
is working at a _xed .paint the angles of attack of all the sections are constant, independently of the

ang_dar velocdty of rotalion of the screw. Then the losses of the screw's working power are esti-
mated. These I divide into three classes: the fan losses, the vortex losses and the resistance

losses. The most favorable working conditions of a blade section are established. I establish

the approximate proposition that when a blade section works at its maximum of partial effi-
ciency, its slip measures the losses, its efficiency is equal to its relative pitch. An exact standard
is given for choosing the _ost .profitable outlines to adopt for screw blade sections. I deal with
the question of the limiting dimensions of the blades, their limited number and mutual inter-
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ference. It is shown that, for given working conditions, there exists a lhnit power which a
screw can employ usefully. In the analysis of these questions the new notion of breadth ratio
is naturally evolved. Among other experiments, those of G. Eiffel with two coupled screws,
the bringing of which nearer together in the inverse sense of their rotation has increased the
efficiency, find a direct explanation. I then proceed to the valuation of the total work of
all the sections of the blades. A ge.ometrical interpretation is given to the question of the
total et_ciency of a blade screw, which establishes the direct relations between the partial and
total etq_ciencies. I examine the question of the effective pitch of the entire screw. I then
pass to the integration of the work of different sections of the blade, and give a general dis-
cussion of the different conditions which may occur in this integration. After an examination
of certain properties of the integrals obtained, I compare the working of the propeller in
forward motion with its working at a fixed point. The question of investigation of the best
contour to give to the 'blad_ is stated as a problem of calculus of variation. The problem
of design and the calculus of the dimensions of propellers is made the. subject of detailed
study. In order to solve the fundamental relations which give the value of the angle of
attack effectively established in each section and which can not b_.solved by ordinary methods,
I have prepared a monogram with four parameters, according to M° d'Ocagne's method of
parallel tangent coordinates. A second monogram has been prepared in order to facilitate
the calculus of the function az and the load efficiency q, but this evidently has not the impor-
tance of the former, since the relations for which it gives numerical values may be calculated
directly. The problem of the calculus and design of propulsive screws is thus entirely solved
in the widest sense for all the demands of practice. Finally, I handle the important question
of the selection and adaptation of screws. I am led to establish the new notion of uniform
fam42ies of screws divided into varieties. Up t_) the present this has generally b_n limited to
screws geometrically similar. I introduce the notion of screws which are, so to speak, hydro-
dynamically alike. When we compare screws among themselves, it is natural to imagine the
different sections of blades in similar working conditions, what directly leads to functional
relations connecting all screws of the same variety. Hydrodynamic similarity is realized when
homologous sections of the blades of the scr_'ws of the family under consideration are geomet_
ricaUy similar and when the relative fluid current is directed upon them under the same inci-
dences. It is thus that the notion of variety of a uniform family" is revealed and characterized
by the similarity of homologous blade sections, independent of tt_eireffective pitches, and by the
identity of the system S(/) of effective angles of attack of all the sections of each blade of these
screws. But the introduction of the system of angles of attack S(/) as a fundamental character-
istic became possible when explicit relations were established between the effective angles of
attack, the geometrical and hydrodynamical characteristics of screws, and their working condi-
tions, results attained for the first time in this thesis. That is why we can now fLXin this way the

•mutual orientations of the different s_ctions of blades whose evolutes in the plane are geomet-
rically similar. It is the latter possibility which forms the basis of the theory of uniform
families and which leads us to the solution of the delicate problem of the selection and adaptation
of screws. I am thus brought to divide screws into thr_ kinds_major screws, optima or
maxima screws, and minor screws--all of which essentially differ in their g_neral properties.
r establish three fundamental relations connecting all the screws of one variety and allowing of
a direct solution, by the reading of a simple diagram, of all the infinite series of screws satisfy-
ing the conditions of speed, power, and number of revolutions for a given case. I indicate
the process of the testing sc_'ewfor choosing propellers in case the drag or head resistance of the
vehicle of locomotion in view is unknown, which is usually the case in practice. The influence
of the number of revolutions on the eflicibncy and siz_ of screws is examined in outline. Note
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V, at th_end of thisarticle,givesthegeometricalbasisof theconventionsused forscrrw
drawings.

Chapter IV summarizes a new method of determining the coefficients of fluid resistance
based on the properties of the screw revealed by the present theory. This method forms, so
to speak, the basis of all the experimental data necessary for the calculus of screws in exactly
the same conditions of screw working. This is one of the most convenient methods, since it
only demands tests at a fixed point of screws with plane-radial blades. I give a brief summary
of the general properties of this new type of plane-radial screws, of which the method I stated
above establishes an important application. This short incursion into the domain of screws
working at a fixed point easily shows us how copiously the working of the screw in all the
deviations of its applications, of which the working at a fixed point has seemed until now the
most difficult to grasp, has been effectually included in the present theory. We find to the
contrary in the light of the actual theory that it is the most simple case.

This first memoir thus contains, besides a general summary of the whole screw problem,
a detailed study of the propulsive screw--that is, the propeller--and the different questions
in connection with it. A s$cond memoir, directly continuing this one, will contain a Special
study of screws at a fLxed point in their different applications, principally when used as fans
and as helicopters, as well as a detailed study of the turbo-motor screws, especiall,y as aerotur-
bincs, that is to say, as windmills.

Finally, I can not refrain from expressing the wish to see special laboratories set apart
for the special study, in tile light of the present theory, of the domain of the blade screw, still
so new, so widespread, and important from the point of view of universal social economy. It
is sufficient to bear in mind for one moment the important uses to which blade screws may be
applied, if only in shipping and aeronautics, without mentioning other applications, such as
fans, turbines, etc._to imagine the enormous supplies of energy which the screw is the instru-
ment of utilizing---to see the importance arising from its study. Every percentage gained in
the efficiency of screws is expressed by an equivalent total of multimillions of fuel economy.
All the power of marine and aerial fleets is directly based on the perfection of th_ screws
employed. The screw thus appeaz_ as an important State Question, and that is why nothing
that can contribute to its perfection should be neglected. The results obtained by the present
theory will be valued the more quickly and powerfully the more rapidly are created special
organizations furnished with all the necessary material for the pursuit of the possibilities here
developed. The program of activity of such laboratories is already drawn up. Tools and
instruments for all the indispensable tests should be collected, and every effort concentrated
to obtain the whole of the experimental data necessary for the calculation of screws. 2"as
principal aim of such an establishment should be the standardizing of all screws necessary for
the development of the technical arts of the State. The screw problem is of such importance
that groups of competent specialists should be devoted to its special study and charged to
watch over its highest and most perfect development. Will those to whom the importance of
the creation of such special laboratories_for the study of the blad_ screw_is more than evident
excuse ms for these pleas in their favor which I have allowed myself to express here _.

The main results contained in this m_moir were in the hands of the author already at the
end of 1915. Their publication in Russian was b_gun in 1916, but only the first two chapters
and the first half of th_ third chapter _-ere edited at the beginning of 1917, further publication
having been stopped by the outbreak of the revolution in Petrograd.

GEORGE DE BOTHE_T.
W_tug_, D. C.

Nov_b_ 1918.
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NOTATION.

UNIFORMLY EMPLOYED IN THE PRESENT MEMOIR.

. D screw diameter.
H effective pitch of a blade section.
r distance of a blade section from screw axis.
b breadth of a blade section.

AA area of a blade element; AA----bAr.
n number of blades.
.V number of revolutions of the screw per second.

angular velocity of the screw; _=2fN.
lr tmaslatory speed of the screw along its axis.

AC partial torque due to the elements, of all the blades, disposed at the same distance from the screw axis.
AQ partial thrust due to these same blade elements.

resultant torque applied to the screw axis.
Q resultant thrust.

8, 8 t, 8n sections through the slip stream.
r, r', r/' distances to the screw axis of a point taken in the surfaces S, 8", S"t

A8, A_/, _/P annular elements of the surfaces S, St. 8 't.
_, _f, _f' slip velocities in the sections S, S', S".

r_, r%_, r'%//race velocities in the sections S, S', 8//.
AM fluid mass flowing in a unit of time through _S, _', _.

5 mass density of the fluid in which the screw is working.
W resultant velocity of the fluid relative to a blade section.

±R fluid resistance of a blade element.

i effective angle of attack (measured from zero line).
-- constructive angle of attack (measured from chord).
9 effective blade angle (inclination of the zero line of one blade section to the plane of rotation of the screw ).

constructive blade angle (inclination of the chord of one blade section to the plane of rotation of the screw).
7 angle between chord and zero line of a section, i=a+_f ; _=_+7.
K'_ lift coefficient.
_z drag coefficient.

K_i=/_5 coefficient of the resultant fluid resistance. AR=EdAA W2=k_A W2; K_Ki: k_-&i
angle between fluid resistance AR and zero line.

_, _T angles of AR with the normal to the zero line.
notation used for either _ or _T.

i/ value of the angle of attack for which the fluid resistance _R is normal to the zero line.
a breadth ratio; a=nb/2_rr.
p "specific function," equal to the part'lal efficiency in the case of a propeller.
z relative pitch; z----VINH.

advance; _= FIN.
relative advance; £= V/ND.

s Slip; sffiffil--z.
q load coefficient; AQ=q6ASF _.
. totalefficiency of the screw.
ie angle of attack of a blade section of a screw working at a fixed point.
Po partial efficiency at a fixed point.

All the quantities relating to the work of the screw at a fixed point are marked by a sub zero.

• p, fanefficiency.
Pt fan losses.
p_ vortex losses.
p_ resistance losses.
p total losses; p=p_+p¢'t-p,

total thrust power developed by a propeller.
L_ totaltorque power absorbed by a propeller.
,_($_ system of angles of attack under which the blade sections are working.



CHAPTER I.

THE FUNDAMENTAL EQUATIONS.

Let us consider an unlimited fluid mass, in which is immersed a blade screw rotating with
the uniform angular velocity II f/sec, around its axis and having a uniform translation with
the velocity V lllst/sec, along that axis. Let us examine, in their, general outlines, the flow
phenomena produced by the blade screw rotation in the surrounding fluid medium. We shall
assume, to fix the ideas, that we have to do with a propulsive screw or. propeller.

The relativity principle of hydrodynamics allows us to consider either the screw moving

with the uniform velocity V in an immobile fluid mass or the translation]ess screw plunged
in a fluid stream directed with the velocity ITin

tV [ Vt inverse sense on the screw parallel to its axis.

Considering the latter case, viz, the screw im-
mersed in a fluid stream parallel to its axis,

the following is observed: The screw rotationcreates a fluid stream, generally called slip

, x , i .,/. i\\ \ \ / / stream, whose section in the neighborhood ofthe screw is very nearly equal to the area

\'\_ ____Q_.J..' /' swept by the blades of the screw. The velocity
/ # of the flow inside that slip stream differs from

\ _ i__J., I :_ / the velocity F. A velocity increase is already

" _--_- -'-'_ _._ 7 _v observed in front of the screw, but it is in the

__ IN wake, in the narrowest section of the slip

_i_.17 - , ,_, stream, that the largest increase of velocity is

7 observed. Beyond its translational motion,
I the fluid in the slip stream has also a tota-
l tional motion, so that the motion of the fluidT

---Z I I particles in the slip stream is a helicoidal one.

k£q_._._ _-_-_"_._,3" Let us dividethe slipstream created by

//;_j/__ _ E-__r_-.%i-4\\\ the rotati6n of the screw into three domains.
. The first domain is constituted by the part of

• the slip stream disposed in front of 'the screw.
This domain is included "between the section So

of the slip stream taken at such a distance fromFIG. 1.

the screw that the flow velocity in it is still

equal to V, and the section S directly in front of the screw, but, however, at such a distance
from the latter that the flow in it is not disturbed by the local phenomena created by the ro-

tation of the blades of the Screw. The exact position of this last section 8 will appear in the
following: The second domain contains the screw and is included between the sections S and •
S' of the slip stream defined by the condition that the sum of the differences of the pressure
in these sections S and S' is equal to the resultant thrust of the screw. These sections will
be submitted in the following to a supplementary condition which will specify them exactly.
The third domain is formed by the slip. stream running off the screw and is included between
the section S' and the narrowest section S" of the slip stream. The sections S, S', and' S"
will be, in the general case, surfaces having the axis of the screw as axis of symmetry. In
figure 1 these sections are represented in a purely conventional manner.

16
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Let us decompose the velocities of the fluid particles in the section 8 into two components;
one axial (see fig. 1) which we will designate by V+v, the velocity v representing the increase of
the flow velocity already existing in the section S; the other tangential component, which
we will designate by rs where r is the distance to the screw axis of a fluid particle crossing the
section S. As for the radial components of the velocities of the particles in the section S,_as
well as in the sections 8 _ and S _t of the slip stream, we will consider them as negligible, these
velocities having very small values for the states of work of the screw which are of practical
importance. The states of work of the screw for which the radial velocities have sensible
values will appear, besides, from the later developments of this memoir. I

We will call slip velocity the velocity v, and race vdocity the velocity r_. The slip and race
velocities have generally different values in different points of the section S. These velocities
are, besides, periodical functions of the time, whose period depends from the period of the screw
rotation multiplied by the number of blades. But we will agree to consider v and rw as the
mean values of the real periodical velocities, and under such conditions the velocities v and r_
can be considered as constant in time and in space for all the points of the section S at equal
distances fr0_ the axis of the blade screw--evidently only for a determinate state of work of
the screw?

For the distribution of the pressures, just as for the distribution of the velocities, we will
only consider the mean values instead of the real periodical _alues. For all points situated in
one plane normal to the screw axis and at equal distances from it, the pressures will thus be
considered as equal.

Let us decompose in a similar way the velocities of the fluid particles in the sections S'
and 8 u i_to axial components

V+v' and V+_"
and tangential components

rsoJ t and rSoJ m

The velocities v' and v" will be named slip velocities in the sections 8 _ and S", and r% _and
r"w n race velocities in these same sections. To these last slip and race velocities have to be
applied all the remarks we have made in relation to the velocities v and r_.

As for the velocities of the particles of the slip stream behind the section S", we will admit,
in agreement with experiment, that they are progressively dissipated by viscosity.

Let us divide the whole slip stream into a series bf regions of infinitely small thickness,
limited by surfaces of revolution, the locus of the stream lines of the mean velocities of the
slip stream, and having the screw axis as axis of symmetry. These -annular regions will cut
off on the surfaces S, S!, and S" annular areas which we will designate respectively by

and which are limited by circumferences having radii

Ar Ar
r +-_-, r --_-

_r' At'
r" +-"_, r' - 2

At" At"
+-T-' r" ---_-

t Tho radial velocities have nonnegllgibla values only for states of wdrk in the aeighborhood of the vortex ring state.
s The relations which exist between the real periedicsl velocities and their mean values have been studied by O.A. Crocco in his memoir

"Sulla teoria analitica della eIlche e su alcuni metodi sperimentan"_Rendiconti degll studied esperlanze eseg_ite nel laboratorio di costruzionl
aeronauticha del bsttaglione specialist. Anno I, No. I, 30 Novembre, 1911. This memoir is repreduced almost completely in_ French in the

,,Technique Aeronautique," Tome VI, 1912. No. 67, p. 194. No. 71, p. 331. No. 72, p. 363.

132025--19--2
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Let us designate by AM the fluid mass which flows in a unit of time through one of these
annular regions. On account of the continuity of the flow we must have

(1) AMffiAS(v+v)_fAS'(V+v')_ffiAS'(V+v')8

where _ is the fluid mass density which we consider as constant in the whole fluid mass. The
constancy of the density is evident when we have to do with an incompressible fluid, such as
water, for example. But the density can also be considered as constant for a compressible
fluid, such as air, for example, so long as the flow velocities do not exceed values of the order
of about a hundred meters a second, because under such conditions the observed pressure
differences will be low, and, accordingly, the density variation negligible.

Throughout this memorandum we will use the metric units:

lclg.--_e_ght; meter; second.

In this system of units, for normal conditions of pressure and temperature (760 mm. and
15° centigrade) the density has the values

for water 8_100k_--_, _

for air 8_--1/8_

Let us designate by AI and A1_ the moments of inertia relative to the screw axis, of the
fluid mass AM considered in the annular sections AS and AS_ respectively. We have:

rg_ AI= AM.P; AI_=AM.r _

" Taking into account the relations (1) and assuming the s_ml]itucle of the flow conditions (') in
the sections S and S n we get

AS V + v" r' AI
(3) AS u---_-_v--r,----_--Ai----_
from which follows

V+v
(4) AF =AI

1 Exactly speaking, we want to say that If all the £r'a are taken equal in the section 8, we admit all the .£rw'm in section 8 mto be also eqtm|.
_nder such conditiom

•r
a8 Irr_• n rI

n beingthe number of_'m and Ara'erespectivelycontainedin • and is. This hypothesisisJustifiedby the followingconslderotlons:Exactly

speaking, we have £8 rAT V+_' •_-_--g_
or going eve• from finite differencesto differentials we get

r_r _'+--_
_ w-

andintegrating
vq-r'

when

(2) -Vi_=o_.
we have

or rl_',,,-dr/d'fand conm_quently
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All the foregoing is only the characteristic of the flow in the slip stream from a purely
kinematical standpoint. We will now proceed to the fundamental equations which connect
the work of the blade-screw with the motion of the surrounding fluid. We shall begin by an

examination of the pressure distribution in the slip stream and of the conditions which exist
on its boundary.

In each cross section of the slip' stream the pressure is not constant, being generally lower
in the middle of the cross section, than on the periphery; this is on account of the rotation of

the fluid in the slip stream. In Note II, at the end of this memorandum, it is indicated in

: general outlines how this pressure distribution can be calculated, and its general course is
represented in Fig. 2. In nearly all the practically important applications of blade-screws the
pressure differences in the slip stream cross sections are small, on account of the fact that the
fluid rotation is slow, and, besides, the pressure differences produced by the fluid rotation• are

partially compensated by the curvature of the flow surfaces in the meridional planes of the slip
stream.

It is thus easy to see that in the section S the pressure is necessarily inferior to the outside
pressure po. This follows from the fact that the velocity of the flow in the slip stream is increas-
ing as we approach the section S. We shall see in the following that when one passes from
section S to section S p the pressure rises, and in the section S p is greater than po. But from S'
to S u the slip stream velocity is still increasing on account of the narrowing of the slip stream,
and therefore the pressure decreasesy and in the section S n its departure from the pressure £oo
is generally very small. In the definition, given in the following, of the normal conditions.of
work of a screw, we shall assume the pressure in the section S u to have recovered its original

value, that is, retaken the value Po. This means that the action of the considered blade screw
is not to produce a difference of pressure, but consists in communicating a certain momentum
to the fluid. Under such conditions, beyond the section S" the slip stream diffusion must go

on at a quasi-coustant pressure. The case of work of the screw with "pressure step" will form
the subject of a separate investigation. 1

The existence of a pressure and a flow velocit)* difference between the inside and the outside

of the slip stream in the sections S' and S n leads us necessarily to admit, as follows from the
considerations shown in Note II at the end of this memoir, that the boundary of the slip stream
mus.t be a vortex sheath maintaining these pressure and velocity differences. The vortex intensity
and the curvature at each point of the slip stream vortex sheaths can be estimated when the

pressure and velocity differences on both its sides are known. The existence of the slip stream
vortex sheaths follows also from the fact that from each blade tip there must run off vortex fila-

ments, which dispose themselves on the slip stream boundary. This directly follows from William

vchlchconfirms the relation (1). Let us now show that in the great majority of practically important cases the condition (2) is satisfied:

I. For V--o, and remarking as will be shown in the following that _--_v, we have

V--_-F"_"F- "_

Thiscasecorrespondstotb_workofthescrewatafixedpoint.
IL For Vha_J1galargevaluerelstlvetoe

V.-I-IP v+_ v . .
v---_--_--_-z- c,o_

This case corresponds to propellersand to turbines.
HI. For Vof the same order as •

V+_ _-bJv 8v ....

IV. For v.const in the whole seetion of the slip stream.
In this case we evidently have

V+v e V+_v eonst

l I call "pressure step" the pressuredifference which can exist betweau the outside pressure p. and the pressure pa in section 8", Midwhich
in some special applications of blade screws can have very sensible valuu.
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Thomson's (.Lord Kelvin) theorem on the invariability of the circulation along a contour
accompanying the fluid in its motion. When following such .a contour embracing a blade of the
screw and moving with the flo_ relative to the blade, the circulation along this contour must

maintain its value--so far as the fluid can be considered as perfect--which is fixed by Kutta's
theorem? Vortex tubes must thus run off the tips of the blades and dispose themselves on the
slip stream boundaries. The fluid in the slip stream having also a rotational motion, there
must also be formed a central vortex tube along the screw axis. 2

We have thus reached a general picture of the flow in the slip stream created by the blade-
screw rotation. Let us now consider the slip stream as represented in figure 2 and apply to

i it the momentum theoremas well as t_e theorem of

_ 1 ____L -J L momentsof momentum. In_.......... _._ .............. -_._ .__.j the case of steady motion
of a fluid these theorems can

\ _ v " / be expressed by the follow-\ \ r. _/ /

"\ \ \\ / / -" _- inguniqueproposition,s
\,, /,

"T...... i................... resultantofthewrenchofthe

-a _.. a dos_ _face, and of O_e

• liI ', ll ! _,_,_,_,___,,,._._.,__ mom_'b,_llb (_'b_, O'¢_,_Wj'_

momentum hay/rigtob_falcon
.,_

] / / l _ _ \- in reversed sense) is e_ual

/ I/ I \ , ,' tozero./_ // _. \ \\ "x.. Let us introducethefol-

\\ \\ lowing notations: We will
// !/ call £_zrt_l thrust and desig-

/ ! \ nate by AQ the axial
--2----_- component of the resultant

fluid pressure on all the
_q"_" blade elements contained in

an annular volume (AS, A80. The moment AO of this resultant pressure referred to the
screw axis will be named part_l torque. The resultant thrust of the blade screw and the resultant
torque applied to its axis will be respectively designated by Q and C. The senses of the blade-
screw translation and rotation, when the latter is propulsive, will be adopted as positive senses
along the screw axis and around it. Let us, besides, designate by p, p', and T" the pressures
respectively in the sections S, 8' and _", the exterior pressure being designated by po, as has
already been mentioned. As for the stresses on the boundaries of the slip stream, we shall
decompose them into components normal to the boundary surface, whose value is po_, and into
components tangential to the boundary surface, the last being produced by the slip stream
friction against the surrounding fluid medium. It is easy to see that in the sections _o and S'o

t See Note IV at the end of this memoir.
See the stereotypical photographs of O_wald Flamm. The air bubbles seen en these photographs dlsp_e themselves along the axis of the

vortex tubes.
Se_ Note I at the end of this memoir.
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(see fig. 2) the stresses will admit only normal components equal to po, so that the tangential
stress components will have a sensible value only at the lateral boundaries of the slip stream.
We will designate by F' and F the projections, on the screw axis, of the resultant o_the tangential
components developed on the lateral surface of the slip stream for its portions respectively
included between So, S n and S n, S'o. The resultant moments, relative to the screw axis, of
these tangential components will be respectively designated by C'F for the portion of the slip
stream surface between So and S _, and by G_for the portion of the slip stream surface between
S Wand S'o.

Let us first apply the theorems of momentum and moments of momentum to the slip
stream portion between the extreme sections So and S'o. The only exterior forces acting on
this volume are. On one hand the thrust - Q and the torque - C (resultant action of the blade
screw on the fluid) ; on the other hand the friction forces developed on the boundaries of the 0

volume considered, whose resultants are F+ F' along the screw axis and GF around the
screw axis, this under condition that the exterior pressure exerted on all the volume con-
siderect has a resultant equal to zero. As there is no fluid momentum variation for the volume
considered, we must have

F + F' -Q=O
OF+ C'F- C ffiO

or

(5a) Q-- F+ F'
(5b) C= GF+ C'F

©

We will consider as negligible the friction forces developed in the slip stream between the
sections 8o and S n, that is, admit

F'_--O; C',_--O

because it is between the sections S _ and S'o, where the slip stream diffusion takes place, that
is developed nearly the whole totality of the friction forces. Under such conditions we will have

(6a) Q_F
(6b) C_OF

which means that the friction forces developed between these sections S n and S'o equilibrate
the thrust and the torque of the blade screw.

Let us now apply the same theorems to the slip stream portion included between the
sections S" and So'. The exterior forces applied to this volume are the resultants F and CF of
the friction forces and the resultant of the pressures normal to the surface of this volume. This
last resultant is seen to be equal to -_AS" (p"-po) when it is remarked that the uniform
exterior pressure po considered as applied to the whole volume (S", S'o) must equilibrate itself.
The inflow fluid momentum, for this volume, has for its resultant along the screw axis

- r,A M ( V + v") + r,AMV = - r,h Mv"

and for the resultant torque around the screw axis

We thus must have
F- r_a_" (p _- po) - r,a Mv" _o

But as we consider that in the section S _ the pressure has already reached the value of the
exterior pressure po we must simply have

7a) F= _hMy"

(7b) CFf Y,AI'% ",
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Let us apply the above-mentioned theorems to the portion of the slip stream between
the sections So and S". The exterior forces applied to this volume are: The friction forces
whose resultants are F' and G'_; the exterior normal pressures with the resultant Y.AS"(p"-po);
the thrust -Q and the torque -G. The inflow momentum has for resultant

_AM(V+v.) - _AMV= _AMv•

We thus must have
-Q + F' +r.hg"(p"-10o)+ _ My"_O

-- G+ C'r + :_AI"_n ----0

But as we admit F', C'r, and _:AS"(10"-iOo) to be negligible, we have

(Sa) Q=Z,_Mv"
(8b) C= Y_AFo_"

It must be remarked that effectively it is for the section S" that the fluict momentum variation
reaches its greatest value. These last relations (Sa) and (Sb) also follow from the comparison
of the relations (6) and (7).

Lot us also apply our two theorems to the annular volume (ASo, AS"). As the friction
forces have been considered as negligible for the volume (So, S"), they have also to be COlmidored
as negligible for the volume (ASo,AS"). "The resultant of the normal pressures being also con-
sidered as negligible, we have -

(9a) AQ=AMv"

(gb) AC----AI.wu

and, comparing with the relatious (8) we see directly that

(10a) Q =F.AQ

(10b) C=_AC

This last consequence is of first importance. It justifies the partition of the slip stream into
annular regions and shows that the resultant thrust Q and the resultant torque C of the blade
screw can be considered as equal to the sums of the partial thrust AQ and partial torques AC
under the hypothesis made. t The relations (10) also establish the possibility of integrating
the partial thrust and torque along the blade. In other words the relations (10) show that
the mutual interference of the sections of the same blade can be admitted as negligible. What is,
in reality, the mechanism of the transmission of this blade section interference ? It is specially
expressed by the pressure differences in the section S". Thus the working conditions of blade
elements included in an annular volume such as (ABe, AS") are submittedto the influence of
the pressure difference A8"(10"--10o)which is, exactly speaking, variable along the blade. But
this last pressure difference being negligible in comparison with the other forces acting on the
blade elements considered, the mutual interference of the blade sections turns out to be also
negligible.

Let us finally apply the momentum theorem to the fluid mass contained in the annular
volume (AS, AS'). The exterior forces applied to this volume are the pressure of the blades
on the fluid, whoso resultant along..the screw axis is equal to -AQ, and the resultant of the
exterior pressure acting on this volume, equal to

f AS' -10A8,

1It will bo easy to see that the sameconclusion would have boon reachedif neither the frictionIorcesnor th¢ premuredifferences _48"(_--_)had been neglected.
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when one neglects the friction forces acting on the boundaries of this volume. On the other
hand, as in the most important practical applications of blade screws the sections S and S'
come out to be close to the blade screw, and as we neglect the radial velocities we have

AS_AS t and v__--_v¢

and on account of the flow continuity we will thus have

The fluid momentum variation for the annular volume (A8_') is thus equal to zero. The
axial resultant of all the exterior forces applied to this volume is therefore equal to zero, so
that we will have

p' aS" - pAS - AQ = (p' - p)aS - AQ = 0
or

(11) _,_ AQ

This last relation will be considered as being the definition of the surface S' when the surface
S will be known.

We can now see that the pressure distribution along a stream line crossing the space swept
by the screw blades will have the general course represented on the right-hand side of figure 2.

Finally the following fact must be noted. If the theorem of moments of momentum

were applied to the slip stream portion included between the sections So and S, it would appear
that the fluid contained in this portion has no rotation. The rotation of this portion of the
slip stream can thus be due only to viscosity and to the periodicity of the pressure distribu-
tion in the section S. It is also for these last reasons that there can be a variation of the
moment of momentum of the fluid between the sections S' and S u.

We will say BY DEFINITION t_t a blade screw iz working under NORMAL CONDITIONS w_e_l.

the relations (8) and (9) can be considered as suy_cient approximations of the thrust and the torque.
This definition is justified by the fact that in the most important practical applications

of the blade screw the normal conditions are realized.

We will call neighborhood conditions all the circumstances which can remove us from the
normal conditions.

In some blade-screw applications, the neighborhood conditions have a primordial influence.
These special cases of blade-screw applications will be submitted to a separate investigation.

Substituting in the relations (9a) and (9b) the above values of AM and A/_ we get:

(12) _Q=AS(V+ _)v"8.

(13) aG= ASr2¢o"( V +V+ v"v)_ $

These expressions will give us the values of the partial thrust AQ and the partial torque AC
produced by the considered blade elem¢nts only when the slip and race velocities v, v _, and _"
will be determined.

Let us agree to call specific function the quantity

_ VAQ-- V v"(V+v _)
(14) "="_--_= ;5" r_'(V+v)

which represents the ratio of the work VAQ of the partial thrust to the work _AC of the
partial torque. It is easy to see that this ratio is nothing other than the partial ey_ciency of
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a blade element of the blade screw considered when the last is propulsive. But I have con-

sidered it necessary to adopt for this ratio a more general name, becanse we will have to consider
it far out of the limits, where it has the meaning of the efficiency of a propulsive screw. We

shall see in the following that this ratio specifies by its numerical value the type of machine
which the blade screw realizes.

Let us now pass to the direct evaluation of the fluid pressure on the elements of the blades
of the screw.

• I

Figure 3 gives a general picture of one of the blade elements considered. The relative
velocity W of the fluid in regard to the blade element is the resultant of the velocities V+v
and r (_-_). The line 00" is the z_o _i_, 1 to which is referred the angle of attack _; _ is
the angle between the zero line and the plane of rotation of the blade screw; it is by this angle,
called effective blade a_, that we fix the inclination of the blade elements on the screw ro-
tation plane.

The relation between the effective blade angle _ and the pitch H of a blade section is to
be directly seen from figure 4. We have

(15) H,- 2fr tg

It is easy to see that the numerical value of the pitch depends upon the reference line adopted
to fix the inclination of the blade element considered.

The pitch H counted from the zero line will be called effective p_tch, in opposition to the
co_truct_ve Fitch measured from any other

reference line--the chord of the blade section _ _

profile, for example--whose consideration can
be more convenient in some cases, as for
the workshop drawings of blade screws. A¢

As far as I knowit, innearlyall the blade-
screw investigations it was the constructive
pitch, measured from the blade section chord, _?rr_
that was always considered; but, as follows _Q. 4.
in full evidence from what is said in !q'ote III at the end of this memoir, the constructive pitch
is no other than a quantity arbitrarily chosen. Therefore we can not adopt this quantity to
describe the bladerscrew properties. The blade properties depending upon pitch can only be
referred to the effective pitch, which is a perfectly defined hydrodynamical characteristic, fully

1For the defluition of the zero line and In .generalall concernin_ the laws of fl_d resistance, se¢ _Tot_III at the end of'this memorandum.
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Independent of the screw blade section profile. To equal constructive pitches can correspond
"veryeasily unequal effective pitches, and vice versa. Under such conditions it is easy to con-
ceive all the difficulties which the consideration of the constructive pitch can bring into the
analysis of the screw-blade problem. Thus, when using the constructive pitch, we can often
find negative values for the slip, while the effective pitch will always give positive values of the
last, as must be from the physical meaning of the slip. We therefore see how important is
the consideration of the effective pitch. 1

An the quantities which are necessary in order to specify the value of the fluid resistance
AR of a blade element are represented on figure 5. It is by the angle _ that we will fix the
inclination of the resistance AR to the normal to the zero line. As is well known, we have

(16) AR=k_AAW _

where/c_ is an empmcal function of the angle of attack depending upon the blade section profile
considered; 8 the fluid mass density; hA the area of a blade element, equal in a sufficient approxi-
mation to

(17) AA = b_r

b being the breadth of the blade element considered.
The velocity .W is equal to

(18) W"Jffi(V +v) 2+r_(i_-_) '
and we also have

(19) Wsin (_-i)== V+v; Wcos (¢-i)--r(_-oJ)

. ., V+v
(20) tg(_- _)ffi_(_2-___)

For small angles of attack the formula (16) reduces to

(21) _ ffi_5_ W_

In Note III will be found all the restrictions in the use of the formulae (16) and (21).

t For example_ the effective pitch gives at once the right understanding of the working conditions of a boomerang. A regular boomerang,
whose two asymmetrical blades arenot twisted, but have aerofoilsections, will have an effective pitch of a certain value for rotations in both senses
in the plane ofits blades, and thus when thrown with aninitial rotattan will producea thrust to which allinteresting boomerang prouertle_are due.
A boomerang is, exactly speaking, nothing more than a propeller left free to move in space.
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If the screw considered has n blades, we will have included in the annular space considered
blade elements, giving each a resistance AR. Projecting these forces AR on the screw axis and

on its rotation plane, we will find the values of the partial thrust AQ and partial torque AC
produced by the elements considered:

(22) AQ=_AR cos (_+_)

(23) ACffinrAR sin (_ +_H)

These last formulae assume that the values adopted for the empirical functions ks and t3_
take account of the possible mutual interference of blades of the screw. In the following we
will return, more in detail, to this last question.

Comparing the relations (22.) and (23) we find

(24) ' AC---AQr tg (_+_H)

and for the specific function we get the value

V_Q v 1
(25) P=_ffir-_ tg (_ +#H) "

It must be noted that the last expression of the specific function is fully independent of any
hypothesis.

The expressions (12) and (13) of the partial thrust AQ and the partial torque _C, found
in the foregoing by the general consideration of the fluid motion around the blade screw, must
evidently be equal to the expressions (22) and (23) of these same quantities found by the direct
evaluation of the fluid pressure on the blades of the screw. We thus have:

hQffihS(V+v)v"$ffinAR cos (_+_H)--nk_ _AA W2cos (_+_H)

V+vP.
AGffiz_r2_"(_offinr_d_ sin (_+f3a) ffinrkCL,4W 2sin (_+#H)

with
AS _ 2_rrAr;A_ ffibar

Introducing these last values in the above formuke we get:

nb W_ cos(_ +t_H)(26) v" (V+v) ----_--_kt

r "(V+v)_ "nb...,
(27) _ _ _-_tc_w sin (_+#a)

In these last relations appears the expression

nb
2_r

which is the ratio of the total breadth of the blade sections considered to the circumference by
them described. Wewill designate this ratio by a and give it the name breadth ratio. Thus
we will state

nb
(28) affi
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Introducingthe notation(28)m theformulm (26)and (27),and takingaccountof the
relation (19), we finally get

_" ak_ cos (¢ + _H)
(29) _--_= sin2(¢,i)

r_ _ aki sift (_+_H)
(30) -F---_--_=. sin2(__i)

These last two relations constitute the first two equations of the general blade-screw theory.
Let us now calculate the work of the fluid resistance of the blade elements considered in

their motion relative to the flow meeting them. We have

n/tR W cos (_R, W)=_/tR sin (_,+ _,).r (9-,,)-,tAR cos (_ +_H).(V+v)

and on account of the relations (22) and (23) we get

(31) n_R cos (AR, W)_hO(fl-_)-AQ (V+v) = 9IAG- VAQ-_,AC-vAQ.

In the last'member of this relation, _AC is the work of the partial torque; VAQ the work
of the partial thrust; wAG the work communicated to the fluid in its rotational motion; vAQ
the work communicated to the fluid in its translatory motion. Accordingly, the quantity
n_d_ cos (AR, W) represents the work spent in the. displacement in the fluid of the blade elements
considered. It is evident that the same relation holds for any other blade elements. We are
thus brought to the following fundamental theorem.

THEOR_ I.--The work of the fluid resistance of the blades in their motio_ relative to the flow
meeting them 4z equal to the work spent for the d_placement of the blades i_, the fluid, that _s, equ¢l
to the work spent in shocks, friction, etc., of the fluid flow against the blades.

This last fact established, we are now able to apply the kinetic energy theorem to the
annular space containing the blade elements considered. We thus have

(32) flAO= VAQ + _A My _'+ _AI%J "'+ [_AG--VAQ - _AG- vAQ]

from which follows directly

This last relation is in reality evident of itself, because it expresses the fact that the work
communicated by the screw to the fluid is equal to the kinetic energy of the fluid in the section
S'. But it was my intention to show, so to speak, the whole genesis of the last relation, on
account of the distribution of energy absorbed by the screw working. It must also be noted
that the relation (33a) is a direct consequence of our definition of the normal working condi-
tions of a blade screw, according to which the losses between the sections So, S and S', S" are
considered as negligible. The relation (33a) can also be written in the following form: sub-
stituting in (33a) for the partial thrust AQ and the partial torqueAO their values given by the
relations (9), we get
(33b) v" (2v - v") = r" 2_, (_ • _ 2_).

We shall now show that on account of the normal screw working conditions not only the
relations (33a) occur, but also that we have, separately, besmes

(34a) vhQ = _A Mr "*
and
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effect, let us apply the Bernouilli theorem between the sections So and S. NeglectingIn

the interior losses between these sections and neglecting also the radial velocities in section
S, we have (1)

po+ _2 =p. __(V+_),2
or

(35a) po--P ----_ (2 Vv-i-v ).

Let us apply once more, to the same approximation, the Bernouilli theorem between the Sec-
tions S' and S'; we have

' _ " _(V+v"),.p +_(V+v)'=p +

But as we admit the pressure p" to have already reached the value po in the section S", we will
have

(35b) p, 8 u-po =-_(2 Vv +v'2-2Vv-_).

Adding term by term the relations (35a) and (35b), we get

- p=-_(2V + v")v"

On theotherhand,on accountoftherelations(11)and (12),we have

p, AQ-pffi_=8(V+v)v'.

From thedirectcomparisonof theselasttwo relationswe get

(2V+v")v" ffi_(V+v)v"
or

which, on account of the relation (33b), has as a direct consequence

_0 # _20J.

But according to the relation (ga) we have AQ_hMv".

t When the mdialvelocitles are neglected, the motion of the fluid in the slip stream, in cylindrical coordinates, is expressed between the
sections 80, 8 and 8', 8n by the following system of equations:

b(V+v) _'p. _(r_)
5(V+v) _-,_. aro,s- _; a(V+v)--_--O

v and r_ being hero the slip and race velocities at any point of the slip stream at a distance r from screw axis, p the pressure at the point con-
sidered, z the cylindrical coordinate parallel to the screw axis, the last being an axis of symmetry for the whole phenomenon.

The third of these equations means that the radial components of the vortices in the slip stream can be considered as negligible. The
second of these equations Justifies the calculation of the pressure diqtributton in a crosssection of the slip stream indicated in Note II. The
first of these equations, integrated along a stream line, gives

8(V+v)Z .

We thus see that when the radial velocities are neglected the race velocity co:nee out to be negligible in the calculation of the pressure dis-
tribution along a stream line of the slip stream.
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We thus will have
vAQ ,_ AMv"v = ½AMy"_

The relation (34a) is thus justified. On account of the relation (33a) the relation (34b) follows
directly.

The two relations
(36) v'--2 v; ¢o"ffi2o_

constitute the other two equations of our blade-screw the0rY.1
These last related'n8 show u_ that the slip and race velocities in the sect_ S u, that is, _ the

outdraught, are exactly the double of the corresponding slip and race velocities in the section S, that
is, _n the _ndraught. The exact posi$_ of the section S to which has to be referred the velocity W,
used for the calculation of the fluid re,stance of the 51_tes, is thus fixed ezactlyY

As far as Iknow, the relations (36) are in full agreement with .aUthe experiments made up
to the present day on the velocity distribution in the slip stream.

Thus N. Joukowski, in his analytical interpretation of Flamm experiments, comes to the
same results?

G. Eiffel has observed the slip velocities in the indraught and outdraught of a propeller for
values of Vincluded in the interval of 10 mo/Sec, to 25 m./sec.; and his experiments verify with
an accuracy of 1 or 2 per cent the relations (36)°'

The relations (36) thus appear as a fundamental characteristic of the flow in the slip stream.
Substituting in the equations (29) and !30) the values found for v_ and _" we get:

2 v a/c_ cos. (_ + _H)
(37) V"*--_- sin_(_-_,)

2r_ a_, sin (_+_H)
(38) . 'V T--_ ffi sin e (_--_)

The expression of the specific function takes the form

V v (V+2v) lr 1
(39) P--r--_ "roJ(V + v) =r-_" tg (_+BH)

The'equations (37), (38), and (39) with the relations

(36) v'f2v; ¢o_ =2¢o

constitute the system of fundamental equations of the general blade-screw theory, which em-
braces all the blade-screw properties?

All the following chapters of this memoir will be devoted to deducing the blade-screw prop-
erties by the analysis of this system of equations. It is in the consequences obtained that there
will be found the best confirmation of the system of equations established.

Before passing to this analysis, I will establish the explicit expressions of the principal
quantitites which are used to characterize the work of the blade-screw elements considered.

i The establishment of the relations (36) for the middle part of the slip stream where the r's are small, needs only the hypothesis that the losses
between the sections 80, 8_ and 8', 8 # are negligible.

Effegtively: The position of the section 3 WIs exactly k_aown, as it is the narrowost section 9f the slip stream: the section 8 is the one disposed
in the indranght where the slip and race velocities are exactly the halves of the slip and race velocities m the section 8n. The posioi0n of the sec -
tion 3' is fixed by the relation (11).

N. 3oukowski, "Vortex Theory of the Propulsive Screw,,, relations (20) and (21) on pp. 11 and 12. Moscow, 1912 (m Russian).

4 G. Eiffel, "Nouvelles recherchos sur la resistance de l'atr et l'avmtlon tares au laboratoire d'Auteml," Paris, 1914. See the table on p. 379.
A critical discussion of this system of equations will be gound in Note VI at the end of this memoir.
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We willdesignateby N thenumber ofturnsofthebladescrewpersecond,and callrelative
pitchthequantity

V
(40). z--_--_

which expresses the ratio of the pitch of the trajectory of the blade element considered to its
own pitch.

Let us besides designate by a and call advance per t_rn, or, shorter, the advance, the ratio
v/N.
We have

, V='2 _V
(41) _ffiW _=Hz

As H= 2rr tg _ we also have

V V Vtg _ =
(42) r-_=2--_--N=_ H =z tg 9

The specific function takes the form
tg

(43) p -- x tg (9 +BH)
and we have

V
(44) # tg (9 + BH)=x tg _=_--_

Let us introduce the notation

(45) a k_ cos (_ + _) = a z2 sin' (_--_)

The equations (37) and (38) reduce then to

*)
(46) V,_ = a z

)'co

(47) "+Wi_-- az tg (_+_)

From these last equations we find directly the values of the slip and race velocities v and roJ:

Vaz az
(48) v =i-U-_-_= rfl _-_z tg

az(l+az) ...... az(l+az)
(49) _ r_= i-----azv_g (_+/_H)=ru 1----_z z tg_tg (_+BH)

Introducing these last values in the expression (20) of tg (_-_) we find:

..... V+_ 1 "

L 1 az(l+az) tg(_+_.)]tg t_ -- _) = _ = (1 -- a z) tg-'---_-- 1 -- a z

from which relation we get the value of the relative pitch

(1 -a z) tg (_- _)
(50) Zftg_ [1 +az (1+az) tg (_+BH) tg (_-i)]
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Introducing this last value of the relative pitch in the expression (43) of the specific function, we
find:

(1 -az) tg (_-i)
(51) P=tg (_+$H)[1 +az (1 +az) tg (_-b_.) tg (_a--_)]

We thus see that the relative pitch z and the specific function p of a blade.element are functions
of the angle of attad¢ _ only. We can therefore consider the specific function as being a function
of the relative pitch only. We are thus brought to the following theorem:

Tm:oR_ II.,---The specific function p of. a blade element is a function of the relative pitch of
the same blade element only,

Substituting in the expression (12) of the partial thrust, the value (48) of v we get:

2V'az
(62) AQ=2 _sv(v+v) _=_aS_
and introducing the notation

2az
(53) (1 -- a z)*= q
we get
(64) AQ=_as V2

which expression of the partial thrust is similar to the expression of the fluid resistance

R = 7¢J_AW2

We will call/oad coe_cient the, coefficient _ defined by the relation (53).
Introducing the value found for the partial thrust A Q hi the expression (22), we find for

h R the value
•AQ _8A8

(55) AR ffi ncos (_+#H) ffin cos (_+#.)

And for the partial torque _ G we find the value:

(56) h C= h Qr tg (_ + _H)= r q_h S V 2tg (_ + #H)

The work developed in a unit of time and the power absorbed by the blade elements consid-
ered are equal to
(57) V,aQ=q_A S Vs

(58) ea O=qSa8 V3tg (_+_.)
tg_

Between the slip s and the relative pitch z exists the relation

H-_, 1-_=l-z(59) s=_ =
from which follows
(60) z = 1-- s

Let us finally agree always to consider the indraught and tl_e outdraught relativeto the
slip stream which the blade-screw rotation tends to produce.
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THE STUDY OF THE SPECIFIC FUNCTION.

We will make the present discussion in the following way: On one hand we will direct
our attention to the blade elements; on the other, we will follow the general picture of the
phenomenon by aid of our system of fundamental equations. For the general view of the
different states of work of the blade-screw, which we have in mind here, it will be more convenient
to fix the orientation of the fluid resistance AR relative to the blade element by aid of the angle

I
ltlo. 6. o

fl' between AR and the zero line. The senses adopted as positive for the angles fl' and i are
indicated on figure 6. Substituting for flHin the formulm (45), (50), (43), (48), (49), (52)
and (56) its value

lr t

we get

(61_ azffi 2 sin_'(i--_o) ffiV +v

1-az V
(62) z = tg _[az(1 + az)c{g_' - _) -- ctg(i-- ¢)] =

ffi z tg _ 2 V_Q
(63) P ctg(_'- ¢)

(64) vffi V.1-azaZ=rf_l__azZ tg

. az(l+az). _,(65) r_=vla---Zaztl'+az)ctg_'-_)f_z_g_ T---_ o_g -¢)

,_Agv(V+ v)8 = _8,_8 _ = q&_8V _(66) AQ

• (67) AC-- AQ r ctg (_' - _) ffir_/_A8_ ctg (_' - ¢)

In these formulm figure the two empirical functions k_ and _', the general course of which
is nearly the same for all the aerofoil profiles. For variations of the angle of attack i starting

32
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from zero, the empirical function 8' increases very rapidly, and even for small values of the

angle i reaches values near to 90 °, which value this fimction mamtams till the angle of attack
approaches 180°; for values of the angle of attack near 180 ° the angle t3' rapidly reaches also
_.he value of 180 °. The empirical function k+ also increase_ rapidly with the angle of attack,

up to a certain value of the latter, after which the increase of k+ becomes moderate; after the
angle of attack ha_ reached the value of 90 °, the empirical function ki
decreases, first moderatelyi afterwards rapidly, and approaches the +_iJ t J_
value zero when i _pproacbes 180 °. (See Note III at the end of # / ! _ I

thismemoir,) _>_i /i\h_ _ .
In the present discussion it is the general c()ur.+e of the whole j --

phenomenon of

lish. The quantitative side of the question will be taken up in full _ _-<---F_ ,)
detail in the following chapters. This is why in this chapter, for i__r_--_._ e,

the simplicity of the analysis and the symmetry of the-results, we ii_l I', tIlk'It I ,-,
wiU assume that the blade elements considered are simply consti- ___L_"

tuted of flat plates with the blade angle _ equal to 45 °. \ /fY_\" "1
I will begin by two ,general remarks. ---___ _ / ,_ I \ \_" _:-

_\\ \ \ I / i //

Remark I.--The expressions (9a) and (9b) of page 22 will _%%\\ /f4_£/
give us in magnitude and sense the values of the partial thrust "_, \ \ 'V / / /
_Q and the partial torque ACwhen AM and A1_ are always taken as \ \_ ! ! / !
positive, But the relations (1) will give for AM positive values _A ,IllJ
only when (V+v)>O or (V+vr')>O, in dependence upon the ex- /_2_.7Q

pression adopted. We must therefore, in the expressions of A M and

_I', change the signs before (V+v)and (V+v') when these last _t_ _L_5"
expressions will become negative. This corresponds to a change in _ _._
the sign before az in the equation (46), when (V+v) becomes nega- __4____,_,_7_-S
tire, and in the equation (47)when (V+v")= (V+-2v) becomes _i_ _i_._
negative. Thus, for (V+v)<O and (V+2v)<O the. second mere-

'72bers of the equations (46) and (47) change their signs. It i+ only "_k"__' """"

with such changes in sirens that the equations (12) and (13) from _\ _ _
page 23 become (_ompatible with the equations (22) and (23) of _ll _£
page 26, which always give _Q and _C in magnitude and sense, f'7_" 7_.

Let us examine in their general outlines the phenomena" which

accompany the change of signs of (V+v) and (V+v"). Letuscon- _li_
sider a blade screw working at a fixed point, and let us communicate _ _"
to the blade screw a translation along its axis of increasing velocity /-_/--P_._.,

in thesense inverse to the senseof the thrust produced bythe screw:. _]_]//£\ _ _"
or let us consider a fluid current running on a blade screw working _.\.\ i / I/I

at a fixed point, with an increasing velocity, uniform in the whole _'_\ \ \l/! ,;'_
current, parallel to the screw axis and directed on the screw in the \ \ \ Iil-/\ XX.l t;_
sense of its thrust. Since in the slip stream created by the blade i k l, lJ J ,J

screw the slip and race velocities decrease as we move away from
the blade screw, atarting from the sections S and S", there mus_ be f'2_. 7_
formed, as soon as a fluid stream is directed on the blade screw in the sense above indicated, two

surfaces ofseparat+_ra through which there must be no flow and between which the screw will be
included. This state of things is schematically represented on figure 7a. When the velocity
of the fluid stream directed on the blade screw is increased, the two surfaces of separation will

approach one another, and there will be a moment when one of these surfaces of separation
132025--19--3
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(it will be the one disposed in the indraught) will cross the space swept by the blades of the
screw. This moment will correspond to the change of the sense of the fluid stream crossing
the space swept by the blades of the screw. At this moment the sections 8 and 8' of the slip
stream will be interchanged. The crossing of the space swept by the screw b]ades by the
surface of flow separation is characterized by the conditions

(V+_) =o and i=_

which bring with them a z = o_ and therefore x--o for v# o. We thus see that we must have
N = oo; that is, the blade screw will show a tendency to take an infinite rotation. The thrust
and the torque of the blade screw have the tendency to disappear. In the case of a ship pro-
poller, in the state of brake work of the propeller, the whir_in9 phenomenon is often observed
and corresponds to the conditions just described. When this critical point of work is passed,
a now state of work establishes itself, for which the two surfaces of flow separation are disposed
on the same sidoof the blade screw. We have (V+v)<o but (V+v_)>o. Between the two
surfaces of flow separation there will appear a vortex ring, stationary relative to the blade
screw, whoso axis coincides with the axis of the screw, as schematically represented in figure 7b.
I have named this last state of work of the blade screw the vortex ring state of work. This
state of work is included in the interval (V+v)=o and (V+v")=O. We will designate by
_+$ the value of the anglo of attach which corresponds to this last condition. At the."
moment (V+v")=0, the fusion of the two surfaces of flow separation takes place (see fig. 7c)
which is immediately followed .b3rtheir disappearing as soon as (V+v") has changed its sign,
which corresponds to the change of sense of the whole stream crossing the screw. From this
moment on, the slip stream created by the blade screw is, so to speak, vanquished by the out-
side stream directed on the screw. The ensemble of the phenomena is just that which

accompanies the change of sense of the stream crossing the blade screw.
For the vortex ring state of work, an.d for the states of work near to the last, the radial

velocities, near the space swept by the screw blades, have sensible values. Under such con-
ditions our system of equations (61)-(67) can give only an approximate characteristic of these
states of work, for the detailed study of which the radial velocities have to be taken into account.
[ will limit myself here to the establishment of the existence of the vortex ring state of work
and will not go into its detailed study, t

Remark II.---The complete cycle of states of work of the blade screw includes the states.
of direct rotation, that is rotation in one sense, and of reversed rotation, that is rotation in the
inverse sense. The states of work of direct rotation are separated from the states of work of
reversed rotation by the standing states. When the blade screw is stopped in a fluid current,
the angles of attack of the blade elements have for values

We thus see that the states of work with rotation in one sense are included in an interval of

variation of the angle of attack i equal to t. On the other hand, it is *asy to see that the
states of work of rotation in one sense can only be the reproduction of the states of work of
rotation in the other sense, when the screw blades are of identical configuration on both sides.
Under such conditions all the quantities characterizing the blade screw working must be
periodical functions with a period equal to _r. This remark will allow us in the present case,
i. e., of blade elements constituted by flat plates, to judge of the values of the function con-
siderod in an interval of variation of i equal to 2_, when this function shall have been studied
in an interval of variation of i equal to ,r.

z The author has been deprived of the possibility of reproducing expe.rlmentally this interesttrlg vortex ring state of work. All the foregoing
description of the phenomenon has been obtained by its purely analytical discussion.
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As for the standing states above mentioned, it must be noted that, the screw having no
rotation, the phenomenon of the slip stream disappears, and it is to be expected that our system
of equations will give only an approximate characteristic of these standing states. But, when
the standing states establish themselves we have simply to do with an immobiIe screw plunged
in a fluid current directed along its axis, and, accordingly, this standing state can be very easily
submitted to a direct experimental study, since we have only to measure the drag of the blade
screw and the torque necessary to prevent its rotation.

Having established the existence of the vortex ring state of work and the periodicity of
the function describing the blade-screw work, we shall study first from a purely analytical
standpoint the general character of variation of the principal functions occurring in the blade-
screw theory.

Let us first examine the general course: of the functions az and ctg (fl' -¢) which figure in
all the formul+e (62)-(67), and which depend upon the empirical functions ki and 8'.

We have
alhsin (_'- +_) v

(68) az-_ _sin 2(_-_)=V+v ,

For i--_, az = + ¢+; the function az has an asymptote parallel to the axis of ordinates and
we have (V+v)-_0. The function az is equal to zero for 8' =_o which Corresponds to a very+
small angle of attack i--_. For values of the angle of attack included between e _ i _ _ the
function az takes positive values. For (F+v")--0, we have az=-I, the angle of attack
having the value i-- - [+r- (_o+ if)]. In the interval- [+r- (_o+ _)] _<i _ _o,the function az takes
negative values. The general course of the function az is represented in figure 8, where the
sign of az has been changed in the interval i< - (r-_) and i> (_+_b). The function az appears
then as a periodical function with a period equal to _, in complete agreement with the fore-
going remarks, and under such conditions the system of equations (62)-(67) can be considered
in the whole interval of variation of i between 0° and _=180°, with the exception of the interval
corresponding to the vortex ring state of work. For this last state of work the portion of the
curve of az is plotted in dots, in agreement with the change of sign in the equations (46) aml
(47) indicated above. In this same figure 8 is represented the general course of the function
ctg(_'-_), which directly follows from the general course of the empirical fm_ction _'.

After having established the general character of variation of the functions az and .
ctg(B'-_), it will be easy to follow the general course of the functions:

• +) az

(69) _'='1 -- az

r_ az(1 -t-aZ)ctg(_, +_)(70) V-- 1-az

1 --az V

(71 ) x = tg-_[az(i 5 az)ctg(_' - _)---:ct+g(_--_) = NIl

1 - az x tg
• (72) P=ctg(_' - _)[az(1 + az)ctg(_' - _) --ctg-(i- _o)]----Ct-g--_)-:--_)

(73) v az

(74) _----x tg az(l+az)^,_

2az
(53) q = (1 - azp
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By aid of these functions we can in all the cases appreciate the values of the slip and race
velocities and follow the variation of the specific function and the partial thrust. In all the
following diagrams the parts of the curve corresponding to the vortex ring state of work are
represented by dots.

In figan'e 9 are represented the functions v V and ro_/V. These functions have an asymp-
tote in common for az.=l, that is, I/--0; the function ro/V has also an asymptote parallel to
the axis of ordinates for az_-oo; that is (F+v)=0. Both functions are equM to zero for
az-_O. The function r_/V is equal to zero once more for az-- -1; that is (V+v')=0. A
maximum and minimum of the function ro_/V are fixed by the condition

d Faz(l+az)7 0f=- z_I=
taking into account that ctg (fl' - _)_--1 for angles of attack having values not too close to 0 °
or + 180 °. From the foregoing equation we find

In Fig. 12 are represented the functions x and p.. For i =o, the relative pitch x being smaller
than unityhas values near unity. The relative pitchx is equal to zero for az -- 1 and az ---oo and goes
through a maximum between the values of az which correspond to values of the angle of attack
included between i=io and i--,. &s by definition x= V/NH, the relative pitch can take the
value zero only for V--0 or N= But to the value i--9 corresponds the beg_ming of the
vortex ring state of work with N= a¢ ; as a consequence, to the value i =io will correspond V=0,
that is, the state of work at a fixed point. The relative pitch x _- oo, that is, admits an asymptote
parallel to the axis of ordinates, for

az(1 +az) ctg (_'-_)--ctg (i-,)

This last relation gives two .values for the angle of attack i, one positive, the other negative,
which are approximate values" of the angles of attack corresponding to the standing states,
while for x = oo we have N= 0 on account of the relation x-- V/NH. It is easy to see that the
angles of attack of the standing states have for exact values

4:--- _-,, ; i_=_+_"

In the interval i'a <i<io the relative pitch takes positive values. In the interval io<i<Q
the relative pitch takes negative values. For angles of attack whose difference from the pre-
ceding values are equal to 180 ° the relative pitch takes the same values. For values of i for
which ctg (#'-,)_1. we have p_x, while we admit ,-45 °. The specific function p--oo,
that is, admits an asymptote parallel to the axis of ordinates for ctg (8'-_)--0, which corre-
sponds to i = -_. In the interval i'_ < i < -_ the specific function p has a minimum _eater
than unity, and has a maximum less than unity in the interval -_ < i < io.

In figure 10 are represented the functions o/t2 and v/r_. It is easy to see that for small
values of az we have o/_--v#iR. These functions have the same asymptotes, parallel to" the
axis of ordinates, as the relative pitch z, and are equal to zero for az--0, that is, i--_. When
i tends toward its value i =, the function _/_ tends toward unity, and the function v/r_
tends toward zero. The function _]_ is equal to zero for az = - 1.

In fig. 11 is represented the general course of the function q. This function is equal to
zero for az = 0 that is, i -- _ and for az- o0, that is, i -- ,. This function has an asymptote parallel
to the axis of ordinates for az= 1, that is, i=io. This function takes positive .values in the
interval _< i < _ and negative values in ,the interval _> i > - (,r- _).
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After these preliminary considerations we can pass to our general discussion.
On figure A the specific function p is represented as a function of the relative pitch x. On

figure B is represented the complete system of states of work of the blade screw, whose con-
tinuous sequence we shall establish by the study of the specific function. I

We shall start our discussion from the moment when the screw rotates at a fixed point
with the angular velocity f_ (see fig. B, 1). We have V= 0. Under such conditions the blade
screw can fulfill the. functions of a fan, or.a helicoidal pump, or be a lifting screw (helicopter
screw). The relative pitch x and the specific function p are both equal to zero. The function
az, as directly follows from relation (61), is equal to unity.

(76) az-- ak, sin (_'=-_)
2 sin 2(i- _) = 1.

This last relation fixes the valu.e of the angles of attack of the blade elements considered, for
the work of the screw at a fixed point. We will designate by ia the angle of attack defined by
the relation (76), as has already been mentioned in the foregoing. It is easy to see that this
last value of the angle of attack is independent of the angular velocity _ of the screw rotation.

The slip velocity in the indraught being equal to

az az. 'r51

(77) v--rfl _-_ x tg _=az(l+az) ctg (_'-_)--ctg (i-_)

substituting az = 1 we get
r_

(78) v°=2 c_g (P'-_)-ctg (io-_)

When tl_e values of io and vo are known, the relations (66) and. (67) give the value of the
partial thrust AQ and partial tol:qu_ AG of a blade screw working at a fixed point.

We will designate by fan velocity the slip velocity in the section 8 n, that is v:' --2v. It is
to be noted that this fan velocity is in direct connection with the thrust. If the blade screw
produces a thrust, there must necessarily bea fan velocity; and, inversely, when there is a fan
velocity, there must be a thrust. Such a state of things is a direct consequence of the momen-
tum theorem.

We will estimate the blowing effect of a blade screw by the quantity

_hMv _ _AQ2vp v
(79) P"== llAS' -- _ =,o

az az tg (f3'-_)
(80) P_'= P1 - az- az(1 + az)ctg (/_'- _) - ctg(i - _)

which we will call .fan efficiency. In certain gases, when the blade screw is propulsive, for exam-
ple, the fan efficiency represents in realiW the fan losses, which we will in such eases designate
by p,. We shall take up this last question more in detail in the following. When a blade screw
is working at a fixed point, the fan efficiency gives a valuation of the whole useful work pro-
duced by the screw, which exclusively consists in ventilation, or more generally in transfer of
a fluid. In such cases we will designate the fan efficiency by pc. Substituting in the relation
(79) az = 1, which corresponds to V= 0, we get

/

tg(St)
P°= 2 ctg(/_ "L_) - ctg(/-o- ,p).=_g_

Fora beCterviewo! the generalcourseofthe specificfunction,somepartsofit havebeenplottedon a largerscale in fig.B. In lig. ]3is given
n exactdrawingof thespecificfunctionin agreementwith the/oregoLugdiagrams. It must be notedthat the exteoaionof thediYfere_tparts at
hespeelltefunctioneurv_dependsuponthe typeof bladescreweonsidgred.
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The state of work of the blade screw at a fixed point is schematically represented in figure
B, 1. On the curve of the specific function (see fig.. A) the origin (x = o, p= o) is the represent-
ative point of the work at a fixed point. In this same figure A, I have represented the curve
of the fan efficiency p_ as a fmmtion of the relative pitch.

Let us now allow the blade screw to take a translatm T motion in the sense of its thirst.
The blade screw will become an helicoidal propeller. The specific function will represent its effi-

ciency. As the velocity V goes on increasing, the relative pitch, starting from zero value, will
take positive values. The angle of attack i will go on decreasing; tke function az will remain
positive, but less than unity. As long as the angle of attack remains in the interval for which
_' has values near to _/2, the efficiency p will be nearly equal to the relative pitch x. as directly
follows from relation (63). But. when we reach the interval of values of the angles of attack

for which/_' decreases rapidly, the specific function p, after having reached a maximum always

less than unity, will rapidly decrease. This maximum of the specific function con'esponds to
the maximum of the propeller efficiency. The propulsive state.of work of the blade screw will
end when the specific function retakes the zero value, by the fact that the partial thrust AQ
becomes equal to zero. At this nmment _' = ¢ and the angle of attack has the re1T smaU positive
value _. The function az is equal to zero. The relative pitch z has a value very near unity
but a trifle less. In effect, from the relation (62) we'directly find:

x = 1 - az

['ak_ sin ({3'- _ cos (fl' - _) _ ctg (i - _) _ tg• [_-_-S_-n_--_:L-_)-(1 + az) sin (-_--_)

and substituting fl' =,_; az = o: i = _ we get:

1 _tg (_- _)

(S2_ x=[ a k, ]s_n-2-_,._) - ctg (_- _) tg _ tg

It is thus seen ttmt the propulsive state of work of the blade screw is included in the interval

(83) O<z< 1

in which

(84) O<az< 1; E<i <i.

(85) 0 < p < 1

The propulsive state of work of the blade screw is schematically represented in figure B, 2.
It is easy to recognize on figure A that part of the specific function which corresponds to the
efficiency of the propulsive screw. If the point x = 1 on the axis of abscissae is adopted as origin,
and the inverse sense of this axis taken as positive, the specific function will then represent the
well-known curve of the propeller efficiency as a function of the slip s = 1- x.

, _en the angle of attack decreases, starting from the value i = _, the relative pitch x will
remain positive and will go on increasing; and from the propulsive state of work of the screw we
wiU fM1 into a ver_- short intermaliate state of brake work, which will bring us asymptotically to
the turbo-motor state of work of the blade screw. This intermediate state of brake work cor-

responds to very small variations of the angle of attack fl'om i = _ to i = - _ (considering _=45°),
the angle _' varying from fl' = q to fl' = - _ (see fig. B, 2 and 3). The value z = 1 (for i-- 0
and 'fl'ffi0 is thus included in this intermediate state (see fig. A). For fl'=-_ we have
ctg (fl'-¢)= 0, 5C= 0. p= :i: w.. The branch of the specific function con'esponding to the
intermediate brake state has an asymptote l)arallel to the axis of ordinates. The value of the

f
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relative pitch, abscissa of this asymptote, although greater than unity, is, however, near to
unity, and its value is obtained by setting i--_ in the relation (62).

&t the right-hand side of the asymptote just described is disposed the branch of the specific
function which from positive infinity quickly reaches a minimum greater .than unity as directly
follows from the equation (63)--and takes afterwards values increasing up to infinity, bv a
parabolic branch nearly rectilinear and bisecting the angles of the positive axes of coordinates,
while for B'_ - _-/2 we have _--_p (see fig. A). This branch of the specific function corresponds
to the turbo-motor state of work of the blade-screw, schematically represented in figure B, 4.
In this interval the specific function is equal to the inverse of the efficiency pTof the turbo-motor.

1
(80) _ = -

P

The curve of the effÉciency Pr is represented by dots in figure A. For the study of the turbo-
motor state it is more convenient to consider the efficiency p_= _/p as a function of x,= 1/x.
The curve of p, will then be like the curve of the efficiency p of the propulsive screw. In the
study of the turbo-motor state of work we will use these last variables. The turbo-motor state
of work is ended by the stoppage of the blade screw (see fig. B, a'). This takes place whe,'; the,
torque of the resistance applied to the turbo-motor axis becomes equal to the turbo-mote,"

torque. At this moment
(87) z-- co;p--- _;zT=O;pT=O

We thus see that the turbo-motor state is included in the interval:

(88) 1 <z< _;.0<_<1
in which

)
(90) l<p< _; 0<_<1

If we now apldly to the turbo-motor axis a power and oblige it to rotate in the invers_, sen,_o.
the blade screw will be transformed into a hydr.mlie brake (see fig. B, IV'). To this 1.st ._t.t,.
of work, included in the intervrd.

(9I) - ;o <x<0

corresponds that part of the specific fum-tioa curve which from negnti/'e infinity l'v _l _i('al'_ 3"

rectilinear branch, bisecting the angle of the negative axes of coordinates, is directed t_,ward
the origin.

Let us now return to the screw working at a fixed point and oblige it to take a t r_,t':sl::torv
motion in the sense inverse to its thrust. The blade-screw will produce a braking ,_ct.i(m (_e,,
fig. B, 2'). The relative pitch z and the specific function will take neg_tive ralues whose _.bso-
lute. magnitude will at first increase: the curve of the specific function will nearly follow th(,
bisectrix of the angle of the negative axes of coordinates, lmcause 8' has values near to r/2: hut.
as in this interval az is a function, increasing up to infinity, p and :_, after having reached a
maximum in magnitude: will ret._ke zero vahms. In fact, dividing th,: relation (62) by-z

we get:
1 1

_2Z3 (/ Z

tg _ + ) ctg ff3'--_) -a-_z 2 ctg (.-_)
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which expression, for a z= =, is equal to zero. But after having i_eached zero values p and x
retake negative values. We thus see that in this interval, the specific function describes a

loop, reaches the origin by a cusp and by a parabolic branch nearly rectilinear and bisecting
the angles of the negative axes of coordinates, goes to negative infinity (see fig. A). When the
specific function describes the loop, we find ourselves in the.first brake state, characterized by
the formation of two surfaces of flow separation. (See fig. B, 2'.) The cusp corresponds to the

whirling phen_me_,on mentioned in the foregoing, characterized by the disappearing of the brake
action and the tendency of the blade-screw to take an infinite rotation. Afterwards the vortex
ring. state establishes itself, during which takes place the change of the sense of the fluid current
crossing the blade-screw. (See fig. B, 3'.) The vortex ring state is ended by the fusion and

disappearing of the surfaces of flow separation, after which a second brake state establishes itself.
(See Fig. B, 4'.) If it is the screw that has a translatory motion, we have to do with a braking
_ction as in the case of ship propellers. If it is a fluid current that is directed on the. blade-
screw we have to do with a hydraulic brake. The second brake sta_e finishes by the stoppage
of the screw with _ = o: • = p = ± _. (See fig. B, a.) If we now continue to move the blade-
screw in the same sense, or direct on the screw in the inverse sense u fluid current, and allow
the screw to take a rotation in an inverse sense, we fall once more into the turbo-motor state,

but only wit.h a rotation in inverse sense. (See fig. B, IV.) The two stoppage states a' and a
thus separate, the states of work with rotation in one sense from the states of work with rotation
in the inverse sense. The states of work of reversed rotation are represented in figure B.

They constitute, as it wer,_, a picture as reflected in a mirror of the states of work of direct
rotation, and they (.los(, the complete cycle of all the states of work which a blade-screw can
run through. In th,_ case of the blade angle _= 45 Q, the states of work of direct rotation are

quantitatively identical with the states of work of reversed rotation. In the general case the
states of work of direct rotation will be Olfly qualitatively like the states of work of reversed
rotation.

If we now look back to the foregoing (liscussion, the following picture appears: The

complete cycle of the states of work which a blade screw can run through donsists of seven
states of direct rotation and seven states of reversed rotation, separated by the standing states. *
The states of reversed rotation constitute, as it were, a reflected image of states of direct rota-

tion. Figure B gives a schematical representation of the complete cycle of these states of
;v_)rk. The specific function unites into a continuous whole all this system of states of work
_)f the Made screw. 2'he zero and infinite values of the specific Junction separate the di._rerent"

states of wor_" one J'ro,l_ the other. The _axima and minima of the specific function indicate the
iito.vt.favorable v)or_ing condititms oJ the blade.sc_'ew in the corresponding states.

I shall iinish this chapter by mentioning two very interesting cases of blade-screw working

which at first glance may appear rather paradoxical.
Let us consider a blade screw with a constructive pitch equal to infinity, whose blades

have their sides of different configuration. (See fig. 14.) It is evident that the rotation of
such a screw at a fixed point will produce no thrust. But it is sufficient to communicate to
such a screw it translation in one sense or in the other to get a thrust. The propulsive thrust

will appear from the moment when the velocity W has such an incidence on the zero line that
the fluid resistance ±R will be dLsposed on the same side of the screw rotation plane as W.
With the notations of figure 14 we will have a propulsive thrust as soon. as the angle of attack

hm_ a value greater than the one which corresponds to

Exactlyspeaking to these 16 states of work has to be added a 17th state; it is the one with V--O; fl-O disposed between the two states of
work at a fixed point with direct and reversed rotation. The complete cycle of states of work of a blade screw is thus a double cycle.
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Let us consider again a screw with blades of different configuration on its sides, but with

a constructive pitch equal to zero. (See fig. 15.) It is evident that such a screw disposed in
a fluid current parallel to its axis will take no rotation. But it is sufficient to communicate
to such a screw a rotation in one sense in order for the screw to remain rotating in that sense.
The blade screw will become a turbo-motor from the moment when the angle of attack takes
such values that W and AR are both disposed on the same side of the plane of the screw rota-
tion. Those values of the angle of attack depend upon the disposition of the zero plane relative

to the blade sections considered. The working of blade screws under this last condition is
known under the name of au_)rotatia_ 1 and has been observed by several experimenters.

V

, i _,,

/_. ,-_'n:_;)....... _--- _ac _z'2.-o.,]
"_"IY" /
/', /

I', . /
I

FIG+ 14. FIG. 15.

Our system of fundamental equations easily embraces these two cases of work of a blade
screw and allows their complete quantitative study. These two cases of blade screw work

are particularly fitted to show the great importance of the effective pitch. In the cases con-
sidered, the constructive pitches have values equal to zero and infinity, but the effective

pitches have finite galues, and there is nothing paradoxical in these cases.
After this general review of the phenomenon of working of a blade screw, we will pass to

the special quantitative study of the different working states which can take place for a blade
screw; we shall begin with those states of work which are the most im.portant owing to their
technical applications.

, See "La Technique _.eronauflque," Tome I, No. 3, p. 10_, 1910•
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CHAPTER III.

THE STUDY OF THE PROPULSIVE SCREW.

For the study of propulsive screws or propellers it is more convenient to use the angle _m
which we will for simplicity designate by _ in all this chapter. In the first chapter we have
established the following system of formulm:

v ak_, cos (_+0) ,akicos (_+_)
(92) azffiV-_= 2 sin' (_-_) = _-s_-_ (-_:-_) ;

V (1- az)tg(_- i)
(93) z = )V-H= tg _[1 + az(.1 + az) tg(_ + 0) tg(_ - i) ];

(94) VAQ z tg _ (1 "az)tg(_-i)
o = _ = tg(¢ + 0) = tg(¢ + _)[1 + az(1 + az)tg(q_ + 0)tg(¢--i)];

¢ZZ ($Z

(95) v= V l -az =rfli-Z-_P tg (¢+0);

az( 1 +
tg(_ + _) -- rfl az_. _a_z ) ptg=(¢ �O)(96) r_= l--az V _ ;

(97) AQ = 2_ASv(V+v) -- q_h8 I72;

2az

(98) if="(1--az)' ;

(99) AL'= AQr tg(¢ + _);

• / I
I
I

1_o. 16,

In the second chapter we have introduced the notion of fan efficiency

(100) 1/_hMv"' az az tg (_--i)
P'= f_AG =P IL-_ .--tg(_+0) [I+az (I+az) tg (_+_) tg (_-_)]

Introducing this quantity in the formulm (95) and (96) we get

(101) v--rt2p, tg (_+0)

(102) re --(1 + o,z)_p, tg a (_ +O) .
46
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For the case of a propeller the fan efficiency p, represents the fan losses p_. We thus have

(103) p, ffi p_

For the propeller _rorking at a fixed point we have V--0 and consequently

(104) az= 1

as directly follows from relation (92). The condition (104) can also he written 1

(105) nb 2 sin= (_-i.) ,,., 2 sin 2 (_-io)
a- _-_= k,cos (_ + 8°)--k_ocos (_ + 8._)

This last relation defines the angle of attack of the blade element considered for the blade
screw working at a fixed point. .ks this last relation does not contain the angular velocity _o
we are brought to the following important theorem, which gives the fundamental characteristic
of the fixed point screw working:

THEOR_.._ III.-- Whe_ a blade screw is working at a fixed point_ the angles of attack of all
the blade sections have constant values independent of the angular velocity of the screw rotatio,r_.

We are thus brought to the conclusion that for a blade screw working at a fixed point all
the quantities that are functions only of the angles of attack of the different blade sections
keep constant values, independent of the variations of the screw rotation.

In the second chapter it was also mentioned that for the iLxed point screw working the fan
efficiency gives the evaluation of the whole useful action produced by a blade screw, which
consists in blowing, or, more generally, in transfer of a fluid. Substituting in t_he formul_
(100), (101), and (102) az= 1 and replacing p, by pe we get:

tg (_-io)
(I06) PO-tg (_+_o) [1 +2 tg (_-/o) tg (_&)J;

(107) Vo=rftop tg (_ +fie)

(108) roJo----2_ePo tg 2 (_ + 80)

We thus see that the partial e_dency poo_ a 5lade screw at a fixed point has a constant va_ue inde-
pendent of the angular velocity Oo and that the slip and race velocities vo and r_e are proportional to
the angular velocity no. The slip stream created by the blade-screw rotation at a fixed point
remains thus similar to itself independent of the al%_lar velocity of the screw. The configuration
of the stream tines of _he slip stream remains thus invariable relative to the screw axis; and

it is only the velocities along these stream lines which vary proportionally to the angular velocity
of the blade screw.

The values of the partial thrust and partialtorque of a blade screw working at a fixed pohlt
are given by (see the relations (97) and (99)):

(lO9) .aQo=2_aa'Vo== 2_aSr:_o_po' tg: (_+ &)

(110) hG° = 2arASr:eo=po' tg a (_a%8e)

and it is easy _, see tha_ we have

½AMY "_ vo_Qo _o 1

t ._.11the qu,_u_itiesrelating to the work of a blade screw aSa fixed point are marked by a sub zero.
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From this last relation it directly follows that for the evaluation of the useful action of a blade

screw at a fixed point, the slip velocity v, plays the same rSle as the velocity V of a propulsive
_crew.

The expression (97) of the partial thrust becomes indeterminate for V= 0 because we have

V'. _--0. _o. It is why, when we have to follow the work of a propulsive ,_crew up to the fixed
point, it is more convenient to consider another form of the partial thrust which can be obtained
from the expression (97), putting in evidence in it the angular velocity _. We have:

_Q = g_8 V 2= q_8_/_ "
but as

V
_=ztg_

we have

(112) V_ 2az tg 2 (,-i)
q_-_-- [1 +az (1 +az) tg (_+8) tg (__i)]2

and on account of the relation (100)

(113) .. V3 .p_.
u_--_ = _-_ tg 2 (_ +8)

We thus finally get

2

(114) _ AQ = 285Sr_aP-_z tg _ (_, +8)'

This last relation goes directly over into the expression (109) for V=0 (az=l; i_io).
Adopting the notation

p= aztg' (_- i)'
(115) q' =_zz tg'(_ +_) = [1 + az(1 +az) tg (_ +8) tg (_-i)]=
we get

(116) AQ = 2q'_f_S'_'

• (117) aQ, = 2_8_u_rsl2o"

with

, = tg' (q,- io)
(118) qo=#_ tg _ (_o+f],) [l+2tg(¢+Bo)tg(_--io)]=

I will limit myself here to these brief general considerations concerning the work of a
blade screw at a fixed point, which we will need for the following developments of this chapter,
whose main subject is the propulsive screw. The working of a blade screw at a fixed point will
be submitted by us to a separate detailed and complete study.

We shall beg4n the investigation of the pr()peller by the consideration of its losses. I
divide these losses into three kinds:

I. The fan losses to,.
II. The vortex losses :o,.
III. The resistance losses Pr.

The total losses will be the sum of the foregoing losses:

(119) p=p,+p_+?,
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I call fan losses the ratio to the total power absorbed by the screw of the kinetic energy of
the translatory motion of the fluid in the slip stream communicated to it by the screw. As
has already been. mentioned, the fan losses which correspond to the blade elements situated at
a distance r from the screw axis are equal to:

½AMy "_ v az az tg (_-i)
(120) ro = _ -- PTZ--P_-:-_ _ tg(_ +_)[1 +az(1 + az) tg(_ + _) tg(_- i)]

I call vortex losses the ratio to the total power absorbed by the screw of the kinetic energy
of the rotational motion of the fluid in the slip stream communicated to it by the screw. The
vortex losses which correspond to the blade elements situated at a distance r from the screw
axis are equal to

½_I_ u2 ½_G.2_, _, az(1 +az). 2. .
(121) Pt= _A_= _---_'-O-=_=P T:-_ _g(_-/_)"

I call resistance losses the ratio to the total power absorbed 'by the screw of the power
spent in the displacement of the blades themselves in the fluid. We shall obtain the resistance
losses which correspond to the blade elements situated at a distance r from the screw axis by
taking the difference between the total losses and the fan and vortex losses.

(122) Pr=P- (P_+Pt)

az az(1 +azL _....
pr=I--P--Pl--'_az--P y_-'_ _g (¢-_p)

tg(_ + 8) - tg(_- i)
(123) p,_-p L(1 "az)tg(_- i)

It is easy to see, as directly follows from the relations (113), (114) and (116), that all the quan-

tities characterizing the _ working can be expressed as functions of the losses only. Let us
for e±ample calculate the :t_ad coefficient q as a function of the losses. From relation (113)
we get directly:

(124) az= P"
P + P,,

and substituting this last value of az in the relation (98) we find:

This last relation shows us that a propeller of high efficiency must necessarily have a small load
coefficient. For example, for p--0.8 and p,_0.08 we have pJp_0.1 and q--_0.2. It has always
been experimentally noted that high efficiency propellers have values of the load coefficient
near that obtained above.

Let us now examine the conditions of the maximum of the partial efficiency p of a blade
element of a propeller. The maximum of the efficiency (see relation (94)) depends upon the
course of the empirical functions t_and ke. But if we note that in the propulsive interval of the
screw we have p_x as long as h_---0,that is, for angles of attack i>'b Q) and that afterwards
t_ is a rapidly increasing function for i <i', it is easy to see that the maximum of p takes place
for values of t3and i near _--0 and i---i'. We will call optima angle of attack and designate by

132025---19----4
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iop_'_i', the angle of attack for which the partial efficiency p is a maximum. Under such con-
ditions we can consider, as a first approximation,

(1 - az)tg(_- i')
(126) Pmx--_x_---tg_[1 +az(1 +az) tg_tg(_- i')]

ake cos
with az = 2 sin _ (_-i')

We thus see that as a first approximation we have

p= 1--pmx = 1--xfs

THr-ORE_ IV.--When a blade element of a propulsive screw is working u_der Conditions
near its maximum eJficieney, its slip is nearly equal to its tota_ losses, and its relative pitch is nearly
equal to its e_cienc,y.

It is now easy to understand why in propeller practice only screws of low slip show high
efficiency.

Let us now examine how p-_x varies with the blade angle _ and the angle of attack lop. We
shall see in the following that high values of Pm_ are only possible forlow values of the optima
angle of attack. Under such conditions the function az will have a low value, of the order of a
small number of hundredths; that is why, for a first orientation in the actual question, we can

neglect az in the expression of p=_ and thus admit

(127) pmJx--_ tg (_- _o_)tg_

j, . • . #:9
J . -- .
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Fi_. 17. FiG. 18.

In figure 17 have been represented curves of the partial efficiency p,;,= as function of the effective

blade angle _ for different values of the optima angle of attack lop. It is easy to see from this
diagram that the smaller the values of io_ the higher are the maximums of pm*_,and that the
maximums of Pmaxoccur for values of _ near 45 °. In figure 18 are given the values of pm_. m_.
as function of ion, and there are also represented the corresponding values of _. An examination
of diagram 17 brings us to the following rule which must be used for the choosing of the profiles
to be adopted for screw-blade sections.

For the sections of screw blades there must be adopted lwofiles whose optima angles of attack
are as amall as possible.



THE GENERAL THEORY OF BLADE SCREWS. 51

This rule allows us to see directly the partial efficiency Pmax. max. aS a first approximation

that can be expected from a given profile. To give a general idea of the values which the
optima angles of attack can have, in figure 19 is represented a series of # curves as functions of ¢,
for the case of air screws, for plane-convex profiles whose ratios c of the thickness e to the'breadth

b are increasing.
e

(128) e= 5

By aid of figure 19 was established.figure 20, which gives for the profiles considered the angles iop
as functions of c. In the same figure is represented the curve of the angles x of the zero lines

of the profiles considered with the corresponding chords?
Fie. 19.
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Fm. 20.

On account of the fact that the values of the ratio c go Oll necessarily decreasing from the

boss to the tip of the blade, the optima angles of attack must also go on decreasing from boss to
blade tip. It thus follows, according to diagram 17, that the blade elements, whose blade
angles , are a little smaller than 15° or larger than 75°, necessarily have small partial
efficiencies Pmax. According to the last, and on account of the relation H= 2_r tg ¢ we can give
ourselves a general idea of the limits between which must be included the portion of the blade
which gives high partial efficiencies:

[ I_

(129) H

m--_--2_rtg15 °---- 0,6 H

t These diagrams were estaolished using the data furnished ny G. Eillel "Complements de la Premiere Edition de la Resistance de l'Air et
i'Aviation," p. 15. As these data have been obtai'ned at low velocity they are not of sufficient approximation to he used in propeller design. As
is well known, the drag coefficients/'Cz decrease f)r large _low velocities under which the elements of propeller t)iades are generally working. There-
fore diagram 20 must give exaggerated values for the optima angles of attack.

The demands of practtee often require larger sizes to be adopted for.the boss than are given oy this relation.
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These last relations bring us to the conclusion that a propeller of high e]ficiency must have i_
diameter of the same order of magnitude as the effective pitch of its tip blade section. This remark
gives a solution to the question of the number of blades to be adopted for a screw.' For the
preliminary design of a screw, the condition (126) fixes the effective pitch H of the blade section
considered. We have

V _,
p _--x= -R-H= _

The value of the effective pitch appears thus to depend upon the e_ciency expected, and depends
upon the power absorbed only so far as the ratio c= e/b depends upon this power. It is the
blade area A and the screw diameter D which depends upon this power. If the diameter is
considered fixed by the relation •

Df 2r_..._ I,2H

it will be sufficient, for a given power, to adopt as many blades of a length of the order of r_, as
will be necessary to absorb the whole power. The limit to the number of blades is given-by the
following considerations:

, / -,, / \

t
FIO. 21.

Let us cut the screw blades by a cylinder coaxial with the screw axis, and let us develop
bl the plane the sections obtained. We will thus get the general picture represented in figure
21, where we have designated by h the distances between the zero lines of the blade sections
considered. By analogy to what we know about fluid resistance of systems of aerofoils, the
blade interference will occur only from the moment when the ratio

b
(130) -_-= ='

becomes smaller than a certain limiting value to be fixed by experiment. Actually we do not
possess any experimental indications of the limiting values for v in the case of screw blades.
For a first orientation in the question let us adopt

(131) v_ 1

which will bring us to the conclusion that for

(132) h_b
4t P_

s Inhisair-screwinvestigationsS.Drzewiecki(see HelicesAericnnes, Paris,1009),alsore_chesthe conclusionthatthereexistsa limittobe

advantageouslyused forthe lengthofscrewblades,and thatthenumber ofbladestobeadopted fora screwdepends upon thislimitinglength.

t
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an absence of screw-blade interference is to be expected. If we note that

(133) h= 2____rtgn

the condition of absence of screw-blade interference _ take the form

nb <.
(134) _-_ = a -._sin

which means that under the assumption8 made for absence of screw-blade interference the breadth
ratio must be smalZer than the sine of the effective blade angle. This last condition can also be
written as follows:

(135) nb _ Z_-r sin

We will designate the product of the number n of blades by their breadth b at a certain distance
from the screw axis by total breadth.

In the general case, without assuming the value of the coefficient v, for the absence of
screw-blade interference, we find the conditions '

(136) h > vb

(137) _n_b_,=va _ sin _.,Trr.

2_"
(138) nb_ --_tg

When it is difficult to realize the condition (135), or, more:generally, the condition (138),
attempts will be made, however, to approach them as near as possible. But since, on the one
hand, as is well known, the maximum breadth b_ of the blades must be smaller than a certain
fraction of the screw diameter, and, on the other hand, the screw blades are working in a stream
quite well limited, in all probability the values to be adopted for the maximum breadth b_ can
be quite large. The limiting value which will be adopted for the total breadth nb_ and the
max_um breadth b_, will fix the limiting number of blades.

Since for a screw of high efficiency there exist superior limits for the diameter D, the m_nber
of blades n and their maximum breadth b_, the thrust power, which can be obtained from a

propeller under given conditions, must also have a superior limit. If one tries to give to D, n,
and b_ values higher than the limiting values, only the absorbed power--that is, the torque
power--will be increased, but the rapid decrease of the efficiency will lower the thrust power
developed by the propeller.

i Some elementary considerations allow us to estabhsh for the limiting value ?_oof ?_,for absence of screw-blade interference the formula

which gives a value of v equal to
_ys

This last formtda gives a general idea of the value of the ccefficient v.
For the realization of screws of large power, one can go beyond the limit

va _ sin

At tile beginning we will have only a small decrease of e!Iicieney, but will be able to increase the power used.
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Making a summary of the foregoing discussion, the following rules can be formulated for

high efficiency propellers.
I. Each blade section _ust work under an angle of attack near the optima angle. For blade

sections we must adopt such. profiles that their optima angles of attack are as small as possible.
II. The screw diameter must be o_ tT_esame order of magnitude as the effective pitch of the tip

blade section. _
III. The total blade breadth in each blade section must not exceed a value fixed by the limiting

value of the breadth ratio (condition (137)).
IV. The maximum blade breadth must not exceed a certain fraction of the diameter.
V. For given wor_ing conditions there exists a limiting value of the thrust power which a pro-

peller can develop.

ta I I ,
l _ / a I
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Fio. 22.

Some investigators have made the following experiments for the determination of the
blade interference. They have first tested two identical screws separately, and afterwards

o have tested them coupled on the same axis. They have found that the efficiency of both screws
working together was different from the efficiency of each screw working separately. Such an
experiment does not prove at all the blade interference. As a matter of fact, two identical
screws coupled on the same axis will.first of all have a double breadth ratio compared to a single
screw. But then, as directly follows from relation (93), the angles of attack of the different
blade sections, for the same values of the relative pitch, will take other values, the breadth ratio

having changed. The partial efficiencies will thus be modified and the total efficiencywill there-
fore also be modified. Accordingly the modification of the efficiency of two coupled screws
is first of all a consequence of the breadth ratio variation, as long as the conditions (135) or
(138) remain satisfied. When we speak of blade interference, we shall always understand by
this a modification of the values of the empirical functions 7¢_and _ produced by the neighbor-
ing blades. It is only in the light of this remark that blade interference can be studied.

When two screws are coupled, the following circumstance can also take place. Let us con-
-sider on one hand a screw with 2n blades, and on the other hand two screws _,ith n blades each,

both coupled on the same axis. From the screw with 2n blades we can pass to the system of

It is only for the blade sections for which the blade angles _ arc near 45* that the partial efficiency will have the greatest values compatible
with tbo :orresponding optima engles of attack. But as H=2rr tg _, for _ 45 ° we have

.:. H H

For a screw of high efficiency the effective pitch is of the same order o.Imagnitude as the diameter We thus see that it is the blade sections
near the boss whicll will realize their maximum partial efficiency corresponding to the optima angles. But as p starts to vary slowly with_,,the

partial efiicicncics win generally first start increasing from boss to ti_) blade, and only afterwards, approaching the tip, will decrea._e. All the force-
going results from the fact that i and _ decrease iL'om boss to blade _ip.
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two screws with n blades displacing, for example, the odd blades of the 2n blade screw along
the screw axis. We will thus be brought to the picture of the figure 22, where I, II, III, IV,

V represent the developed sections, of a 2n blade-screw and I, II', III, IV', V represent the
developed sections of two coupled n blade-screws. It is easy to see that in the first case the
sections are disposed at the same distance h, and that in the second case the distances between
the sections are on one hand increased up to h" and on the other decreased up to h p. If we
wish to maintain the distances between the blade sections considered in the case of two coupled
screws, we must make the blades of the two screws approach in the sense inverse to their rota-
tion according to the scheme I, II", III, IV _, V. In figure 23a are represented two screws
coupled according to the scheme I, II', III, IV', V and in figure 23b according to the scheme I,
II _, III, IV", V. This last remark explains the experiment with two coupled screws for a sym-
metrical and asymmetrical position of the last, made by G. Eiffel,' which showed a small increase
of efficiency when the two screws were brought nearer one another in the inverse sense of their
rotation. From the same experiment it follows that the interference of the screw blades is not

large, because the results obtained for different dispositions of the screws do not show great
differences. But the sum of the powers developed by each screw separately differs sensibly
from the power developed by the two screws when coupled_ which show the very sensible
influence of the breadth ratio variation. When it is required to maintain for two coupled
screws the equality of distances between the sections of different blades, it will be necessary to
give to the blades of both screws or to the blades of one screw a special form not difficult to find.

All the foregoing relates to the study of the screw-blade elements, considered separately.
We will now pass to the study of the screw-blade elements, considered together as a system.

I .shall begin by two general remarks.

i

"\

FIG. 23a. FIG. 23b.

Remark I.--Let us consider each blade of a screw divided into n elements. Let us des-

ignate, respectively, by AQI, AQ, ...... AQ_; AGI, AG2 ...... AC_; p_, p, ...... p_ the partial
thrusts, the partial torques, and the partial efficiencies of the blade elements equidistant from
the screw axis. We have:

= VAQ,= V, Q, FQ.

Let us designate by _ the total efficiency of the blade screw. We have:

VAQ, + VAQ_ + ...... + VAQ,_

' See G. Eiffel, "Nouvelles rechorches sur la resistance de Pair et l'aviatlon fait_ au ]aboratoire d'AuteuH," Paris, 1914, p. 345.
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Let us now examine the correlation existing between the total efficiency _ and the partial

efficiencies Pl, P2 ...... pn. For that purpose we shall use the following.geometrical method.
Let us consider the vectors

whose projections on the axis of abscissae are equal, respectively, to

and on the axis of ordinates are equal to

V_Q,,V_Q,...... V_Q. •

Let us build, starting from the origin, the geometrical sum U of the vectors U, U2...... [7.
(see fig. 24)

_- _,+ _,+ ...... +_

..1 A I

, •
• _. .... . .-. ._e.,.. ........ •

FIG. 24.

The tangent of the angle of inclination of each vector .U. U2 ...... Un to the axis of abscissae is
just equal to the corresponding partial efficiency

_ V_Q,. V_Q, yaQ,
tg (U. X)=p,-_---_, tg (U_, X)=_=_d---_ ...... tg (U,,, X)=p,,= 9,_C,,

while the tangent of the angle of inclination of the vector U is equal to the total efficiency

VQ r (_q, +_q, +...... _q_)
tg ( u, x) =_=-_-_=_ (AO_+AO_+...... hO_)

Q being the total thrust produced by,the blade screw, C the total torque applied to its axis.
The sides of the polygon U, U_ ...... [Tn, U are necessarily making with the axis of abscissae

angles smaller than 45° . Considering thus the vector [7 as the geometrical sum of the vectors
[7, _ ...... [7_,we see directly how the total efficiency is built up of the partial efficiencies.
We can now see that the total efficiency _ not only depends upon the values p, p_ ...... pn of

the partial efficiencies, but depends also upon the partial powers VAQ. VAQ_ ...... VAQn;
_AC_, _ ...... _AC_ because th_ total efficiency depends also upon the length of the vectors
[7. U.. ...... U_ equal to

In figure 25a is represented the case of a blade screw whose partial efficiencies decrease toward
the blade tip; in figure 25b the case of partial efficiencies increasing toward the blade tip; and
in figure 25c the case where the partial efficiencies first decrease and afterwards increase from
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boss to blade tip. In all the cases the total efficiency is increased when to the blade elements
with higher partial efficiencies correspond larger partial powers. It follows from the foregoing
that it is advantageous to give the greatest breadth to those parts of the blades where the
partial efficiencies are highest.

t .... :2 _
I . "- • 'I
_"5_ i_" ,_,,..-_-_.I ....

o .ri_

1 ____x___

.j

,/'

Remark _II.--Let us examine briefly the question of the effective pitch of the whole blade
screw. When for a blade section the relative pitch becomes equal to unity, we have

and the knowledge of the advance whicti corresponds to x= 1 gives the value of the effective
pitch of the blade section considered. As we have seen, the value x = 1 is disposed in the inter-
mediate brake state which separates the propulsive state of screw work from the turbo-motor
working state (see fig. A). Practically, this interval is very short; that is why as a first approxi-
mation we can consider x= 1 either when in the propulsive state the partial thrust becomes

equal to zero or when in the turbo-motor sti_te the partial torque becomes equal to zero. By
analdgy with the conditL,s o£ work of a blade element, the value of the advance _1= V1/N_
which corresponds for the whole screw either to Q= 0 or C-_ 0, defines the effective pitch Ha
of the whole screw
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We will designate by zh the value of the relative pitch which corresponds to the effective pitch
of the whole blade screw.

V
xh--NHl

Let us now pass to the calculation of the thrust-power L. developed by the propeller and
the torque-power La absorbed by the propeller. We have

(139) Q = _AQ = _,q_ASV2= _Tr_Y,flAS;

V aV s
• (140) O= _ACffi_:_-_q_a8In = _ _ paS;

Going from finite differences to differentials we get:

G 2_rSV3 _dr 7r_V' qd'r 2) _r_Vsl,
(142) "=Tf p f ,, ' .--

where we have introduced the notations

We accordingly have

(145) L.f Gafl.a f v':,

(146) .

The calculationof the thrust-powerL_,,the torque-powerLa,and the total,efficiencyn
isthusreducedtothequadratureofthetwo areas/Iand ]_limitedby thecurvesof q and q/p

plottedagainstr2. The investigationof theconditionsof maximum of thetotalefficiencyis
reducedtothedeterminationofthemaxima ofthe_atio11/I_.

Itmust be notedthattheintegrals/Iand Isareindependentoffluiddensity.As a con-

sequence,fordifferentfluidsthevaluesoftheseintegralswilldependupon thephysicalnature
ofthefluidonlyinthemeasurethattheempiricalcoefficientk and theempiricalfunction0
dependupon fluidviscosity.

Itisalsoeasytoseethat,fora givenblade-screwwhose workingconditionsarcvarying,
theintegrals11and I._arefunctionsof'theadvance_ only. In fact,foreachbladeelement
and o arefunctionsonlyofthec.orrespondinganglesofattack,thelastbeingfun6tionsonly

of the relativepitchx= V/NH; in otherwords,functionsonlyof the advance#-_V/N, the
effectivepitchesH ofthedifferentbladesectionsofa givenscrewhavingevidentlyinvariable
values.From theforegoingfollows:

i

l
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1. The total efidency _ era given screw is a function only of the advance _.

I,(_,)
(147) ,/---12(_)

2. The ratios

(148) Q._-=_ I,(_); L_-_.=,r_I,(,)

are also functions only of the advance.
Let us compare the work of a propeller when advancing to its work at a fixed point. Start-

ing from the relation (116) we get

(149) Q--4.m2fu'@dr--_' f q'd(r')--=_a'l',,

and on account of the relation (99) we have

(150) L, = O_ ='l,=_f_f_' tg (_ + $)d(O) ffi'/,_r_af_/a--z-_ 'ts d(O) = _r_f_I'_,j 0,

using the notations

(151) f q' g (r') = I',(_) ; '/sfq' tg (_ +O)d(e) = I',(_) .

these last two integrals being functions only of "the advance _,,as is easy to see. The integrals
I'1 and I', are connected with the integrals/1 and I= by the following relations:

_ _ t,=. I1; II, ffi ua(152) I, - _ _7_I_

For the work of the screw at a-fixed point the relations (149) and (150) go over into

(153) Q,.= _r69ozf q'd (r4) ffi_¢612o"0,

P ' '/,

with the notations

(155) f u'od(r'.) = C,; '/,fq'otg (_ �Oo)d(.rs) = C,,

these last two integrals being, for a given screw, constant quantities independent of the angular
velocity f_o. In fact, q'o and q'otg(_+_o) are functions only of the angle of attack io, and
the last is independent of f_o. The constants C_ and C_ are the limits, independent of the
angular velocity _o, toward which tend I'_ and I'_ when V tends toward zero. The two
constants C_ and C, thus appear as two fundamental characteristics of the dimensions of the
blades of the propeller considered only. We thus see that the thrust Qo and the power Lo are
respectively proportional to the square and the cube of _he number of turns of the propeller.
The differences from these square and cube laws experimentally observed are due, as has already
been mentioned in the introduction, on the one hand to the deformation of the blades, and on
the other hand to the .approximation of the velocity-square law for fluid resistance? The
calculation of the thrust Qo and the power Lo of a screw at a fixed point is thus reduced to the

See, for example, the experimental research el Ch. MaUrainand A. Toussetnt, Bulletin de l'Institut ,teroteehnique de l'Uulversit_ de Paris
Fascicule III, 1913, where for all the sci-ews tested the differences from the square and cube laws have been calculated. These differences
are generally small.
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quadrature of the two areas GI and 02, respectively limited by the curves of _'o and q'o tg (_ + 80)
plotted against.r_ and r_. Dividing (149) by. (153) and (150) by (154), we get

(156) Q= _2 I',(_); L. _2 1'2(_)

For t---fie these last two ratios are functions only of the advance _,.2 The expressions (149)
and (150) show us that the thrust Q and the power La of a propeller can be written in the form.

(157) Q=_-N_I, " (u); Laf _N'.'I,"(_)
adopting the notations

(158) 4z_/f ffi1,"ffi_2i,; 8='I2' ffiI, ° ffiTgtl=.

If we develop/1" and/2" in powers of _, and take the first terms of the series obtained, we shall
find the different approximate expressions which have been proposed by different authors for
the representation of Q and L_.

Let us now examine the different conditions Which can be met in the quadrature of the
integrals 11and Is. We will consider that for the angles of attack values near the correspond-
ing optima values are taken, so that we can admit the angle 8--0. Substituting in the relation
(93) the values of az and H, respectively, equal to

aki cos _; . H= 2z-rtg ¢az= 2sin_(,- i)'

and on account of _ 0 and following p_z we find:

nb k/cos
V 1- _'_ 2sin=(_ - i)

(159) ptg _---_---
1 nb l_icos_ [-1 nb k/cos_ "]t_tg(_-i) �2-_28_2-_-i)[.+2-_ 28_2-_-_)/ _

These last equations constitute two relations between the seven quantities:

V,_, r

p, b, _, . i. "

For each blade section working under given conditions, the quantities of the first group are
known quantities. The equations (159) thus connect with one another the four quantities of
the second group. We thus see that from the four quantities p, b, _, i', two of them can be
arbitrarily chosen, or, more generally, for a given advance _-- V/N, we can submit the four
quantities p, b, v, _ to two supplementary conditions, adopting, however, for the angles of attack
values near the optima values while we admit _-----0.

The simplest case for the quadrature of the integrals /1 and Is is the one which corre-
sponds to
(160) _ fficonst; p fficonst.

s Ch. Maurain and A. Toussaint, in their research Just mentioned, for the representation of the results of their er_periments , use the ratio Q/Qo
and ZalLa for t--fie as functions of the parameter F/.N'D, which is proportional to the advance/z--V/N, while G. Eiffel in his experimental research
_n alr screws uses f_r their repsesentati_n the rati_s Q/ _| D4 and r_/ V_D_ as _uncti_ns _f the same parame_r V /_'D (eornparc with the selation (148) ).

These investigators came to thane conclusions byway of consideratio_ of similitude.
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because under such conditions we have directly

D2. i-qD,(161) /I--- 4' 4---p o

(162) • 7ffip

expressions in which D is the blade-screw diameter. The condition q--const brings with it
az=fcoust, andthus the condition (92) shows us that we have

V=fficonst.

The screws with constant load coefficients along the whole blade produce thus a slip stream
with a uniform velocity in its cross section. That is why we will call such blade-screws screws
with _niform s_ip stream. 1 The condition p--const obliges us to adopt for the partial efficiency
such a value as can be realized for all the blade sections; the blade section with the lowest
efficiency will thus fix the superior limit for the total efficiency. The screws with uniform slip
stream will thus always have a reduced efficiency. The relations (160) have to be used for
the _calculation of the breadths b and the angles of attack i of all the blade sections of a screw
with uniform slip stream.

Let us now liberate ourselves from the condition p = const and see how the total efficiency
can be increased. It is easy to see that we have first of all to adopt for each blade section the
optima angle of attack. If we now would like to maintain the slip stream uniformity, that is,
_/fficonst, the values of b, ¢, and p will thus be fully fLxed. But the screws of highest efficiency
will be obtained when the breadth b is determined, not by the condition q= const, but directly
by the condition of maximum of the total efficiency 7. For the propellers of highest efficiency
we have thus to seek for the law of variation of the breadth b along the blade which makes a
maximum the integral ratio Iz/[2ffi7. The problem of the research of the most advantageous
shape to be adopted for screw blades appears thus as a fully determined problem. Remark I
of this chapter gives a first orientation in the last question. After these general considerations
we will now pass to the detailed study of the question of design of propellers which have to
work under given conditions.

THE PROBLEM OF PROPELLER DESIGN.

The design of a propeller which has to develop a given power and is destined to work with
a given advance _ constitutes, as it were, a double problem. For the evaluation of the work
of a blade screw we must know the exact dimensions of the blades. But the dimensions of the
screw blades are fixed by the strength of the blades, which have to be able to resist the forces

to which they are submitted. In the general case those forces can be exactly evaluated only
when the dimensions of the blades are known. We are thus obliged, for the calculation of a
screw, to adopt a prior_ its approximate dimensions, and by a series of calculations of the screw
work and verification of its strength, to satisfy, by successive approximations, all the conditions
of necessary strength and power demanded.

We shall in the following indicate a general method which will not only allow one to decide
a pr/or_ upon the principal dimensions of a blade screw having to work under given conditions,

I It is evident that we have here only to do with uniformity of the slip velocity v. The race velocity h.as for its expression

r_--_ ) Vtg (_o+B)

and for v=.const, which brings _ith it a_--const, will be constant only if t¢ (_o_)--con_t. In the oaso of propellers the quantity tg (_o H�L�is
always variable along the blade. But we shall see.in the following that fans and helicopter screws _n be built with _o- eonst. In such a co_e we
will have tg (_, nst,owing to B_gOand r_, will be constant when e -const.
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!but which will resolve, by simple reading on a diagram, the general problem of the screw selec-
tion. Let us thus consider to be known, as a first approximation, the blade dimensions of a
screw which has to work with a given advance _ = F/N, and for which we have to calculate the
efficiency and the power it has t(r develop. For such a calculation, the quantities k_ and _, or
K= and K_ have to be -known for all the blade sections of the screw considered, and also the
angles _ of inclination of the zero lines to the chords of the different sections. These empirical
quantities have to be determined from experiment performed at velocities of the same order of
magnitude as the one under which are working the screw blade sections in their motion relative
to the fluid, and in the same fluid as the one in which the screw considered will have to work.
Actually we possess only very few data on the above-mentioned empirical functions at flow

speeds occurring in blade-screw working. Especially for water we possess scarcely any data at
all, the reason being that fluid resistance measurements in water are very troublesome. By
analogy with experiments in air we can expect to get no more than a general idea of the order
of magnitude of the quantities _, _ and ._.

The experiments undertaken up to this time allow one to draw the conclusion that the lift
coefficients Ky do not vary much with the velocity, but that the drag coefficients K_ sensibly
diminish, which is an advantage for the blade-screw efficiency. The absence of sufficiently
accurate data for the empirical functions/Q, _ and -y is actually the oul.y difficulty in the exact
calculation of blade screws. In the question of propeller design we find ourselves actually in
nearly the same "condition as at 'the time when for the problems of strength of materials we did
not possess sufficient data on the coefficients of resistance and the elasticity modulus. The
author hopes that .this lacuna will soon be helped by the use of a new method_which will be
indicated in the following-- based on the properties of the screw itself, which allows the meas-

urement ot the quantities Ji_, _ and _ ifi any kind of fluid_ and in the exact working conditions
of the screw. We will thus admit that the empirical functions 7¢_,$ and _ have been evaluated

by one or another method and consequently are known for all the blade sections of the screw
considered.

Let us designate by S (/) the system of the effective angles" of attack under which are working
the different sections of the blades of the screw considered. For a screw already built the system
S(i) has to be determined. For a new screw, to be built, the system S(i) has to be chosen,
and from its knowledge the effective pitches, or in other words the effective Made angles _ of the
different blade sections have to be determined in such a way that the system of angles of attack
S(/) actually establishes itself when the advance reaches the given value. The angles of attack
of the system S(/) are always decreasing from boss to blade tip. The system of angles of attack
S(_) to be adopted depends upon the properties which we wish our screw to possess. If we wish
to build a screw of high efficiency only, it is the system S(/op) of the optima angles of attack
which has to be adopted. But certain necessities of practice of blade-screw applications can
demand some departure from the system 3(_o_). In the following we shall come back in full
detail to this important question.

The values of the effective blade angle _ and the effective angle of attack i, which for a given
blade section correspond to one another are given by the relatfon (159) which may be written

V (1 -az) tg (_-i)
(163) _--1 x�¬�(1+az) .tg _ tg (_-i)
with

/d cos
(164) az_=a. 2 sin= (_'_i



/
/

/J
/.

/

,/
/

/

THE GENERAL THEORY OF BLADE SCREWS. 6_

inwhich we admit fl_---0, that is, the system S(i) to be close to the system S(iop). The calcula-
tion of either _ or i from this last relation (163) is almost impossible by aid of actual algebraical

methods; and yet the solution of this equation is necessary for the exact determination of these
angles. That is why I have been led to seek for a nomographical solution, which, happily, can
be _ven. I have made use of the method of parallel-tangential coordinates of M. d'Ocagne.

Let us first note, that for a propeller of good efficiency the quantity az is of the order of
a small number of hundredths only. This is on account of the fact that the angles of attack i to

be adopted are always small and that the coefficient k_, of the same order of magnitude for
air and for water, has also the value of some hundredths only.. Although we adopt the formula
(164) for az, it does not follow that the linear law for the coefficient k_ must necessarily be
adopted_ in each case we can consider the value of k taken from the relation k--k4i. But it
must be noted that, for a given blade section profile and for the interval of the small values
of the angles of attack which have to be used, the coefficient k is constant to a good approxima-
tion. After ascertaining that az is a small quantity, let us develop the relation (163) in series
according to the increasing powers of az and neglect the terms of superior order. The error
thus committed is out of consideration for the demands of practice of screw design. We thus
find: r

V 1

rf_ tg (_-i) +az[1 + tg_tg (_-i)]- 1 -- 0
!

and substituting for az its val.ue (164) we get

V 1 i cos _ [ 1
(I 65) r l_ tg_L-_ �ak2 sin 3(_o- i) L �tg_otg (_o-- i) ] -- ! ffi0
and finally

w_

(166) • _M+akN-l=O
t

using the notations
1

M==--
tg (_-i)

i cos _ [I+ tg(_-_] --sin icosi(167) Nffi 2 s_ (*_---_) tg_ (_-i) sin 2(_o-i)

On the other hand let us consider the equation

(168) u L-z+ v L+z
_" lt-2-Ly _ " _2L-y-lffi0

which we refer to the system of the X and Y axes represented in figure 26. When in this equa-
tion (168) we consider u and v as parallel-tangential coordinates, it will represent the point
(x, y) defined by the sheaf of straight lines (u, v) ; when we consider x and y as point coordinates,
it will represent the straight lines (u, v) which the point (z, y) describes. 2L is the distance
between the parallel axes of the u and v, counted along the abscissae axis; It and _ two arbi-

trarY numbers introduced fox the convenience of the scale choosifig. The angle between the

If the anglaB werenot neglected, we wotild have found

t" __|j+ak t cos(i+B) I 0rQ tg sin (4,--i) sin 2(,p-O - "

But as the variations o! the comnesof small angles are small, the error committed negleoting the tmali values of $/JI very small.
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ordinates and abscissae axes is arbitrary. Let us establish a univocal and reciprocal corre-
" spondence between the terms of the equations (166) and (168) as follows:

V U ak_V__

L-z __'7L+z
M=ll 2L----y; "'-'_2Ly

I

FIo. 26.

which corresponds to

(169) u= lV'13, v--/_, a_

x=*i
_- lJ,

(i70)

The equations (169) represent in parMlel-tangential coordinates a system of straight lines;
.and the equations (170) represent in point coordinates two families of curves, with _ and i as
• parameteis. Each straight line (169) which goes through the intersection of two of the

curves (170), or all the curves (170) which intersect one another on one of the straight lines
(167), defines a system of values of V]rf_, ale, _, i which satisfies the equation (166). For the
tracing of the nomogram which gives .the. solution of the equation (166) and which I call the
incidence nomogram I have l'adopted the values

tg(z, y) =0.75; 11=1; /2--12.5

The incidence nomogram is joined to this memoir. _ Its use is very simple; it is enough to
join by a straight line twogiven values oi V/r_ and ale, in order to read on the curves which
cut one another on this line the .values of _ and i which correspond to each other. 2 Thus for
V/rf2 = 1 and ak = 0.01 ; for i = 5° we find _= 52°; for _ = 55 ° we find i = 7 °, and so on. The inci-
dence nomogram gives thus the direct and complete solution of the finding of the effective blade-
angle _ of a blade section when its effective angle of attack i is given, and of the finding of the
effective angle" of attack i under which a blade _section is working when its effective blade
angle _ is known.

For all the details concerning this type of nomogram see "Trait4 de nomographie," by M. Mauriee d'Ocagne, §§ 57 and 58, p. 125, and also
§ 121, p. 320.

I For its use it is good to cover the nomogram with a piece of tracing pap_.
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After we have found for all the blade sections of the screw considered the values of _ and i

which correspond to one another, it will be easy to calculate the values of the function

nb _, cos

for all the blade sections considered, while all the other quantities which figure in the expres-
sion of az are known for each section o[ a given screw blade. Knowing az we will calculate
the values of the load coefficients

2az

FIG. 27

for all the sections considered. We shall thus be able to plot point .by point the curve of

against r_ (see Fig. 27). The quadrature of the area limited by this curve will give the value
of /1. For the calculation of I2 we shall have to determine the partial efficiency p of each
section of the given blade, by aid of the formula

p-:_ tg_ V
(171) - tg (wq-/_)-_2_rNtg (_+_)

in which it is necessary to take account of the values of the angle 8, which has a sensible influ-
ence on the partial efficiency, especially when this angle is negative. The partial efficiencies
p once calculated, the curve of _l/p as a function of r2 will be traced point by point, and its area

• will just be equal to 12. Knowing /1 and 12the values of the thrust power L_ and the torque
power L_ will be directly found for the blade screw considered. We have

And the value of the total efficiency, is equal to

The total thrust Q produced by the blade screw and the total torque O applied to its axis are
equal to

1320_--I9----5
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For the purpose of rendering easier the calculation of az and _/,I have made a second nomo-
gram, also joined to this memoir, which I call the load nomogram, founded on a basis similar
to that used for the incidence nomogram.

Let us take the decimal logarithms of the expression

i cos _ = ak. Mffi oak. M
(172) az-- ak 2 sin_(__i ) c
in which we have put

i cos
M= 2 sinS(___)

and where c is an arbitrary quantity. We find: "
1

log az , _'_ 1
log

(173) lo_-r log-_7-, _O

Let us establish a univocal and reciprocal correspondence between this equation and theequation

u L-= v 7L+z
1=o

as follows
, 1 v

logaz--_;log_-_=

M= 2Ly 2Ly

which gives

•(174) " u--lllogaz; v=/_ logc_

- r 1,-/_ /'/_ lo i cos
(175) *ffi__-_; Yfz-_-_ g2csinS(_-i)

Forthetracingofthenomogram I have adopted:theanglebetweentheaxesofordinatesand

abscissaeequalto90°(seefig.26);11--/_= 1 and logc= 1.5,withz= 0. The secondoftheequa-
tions(174) represents a family of curves having i as parameter when _ is taken as abscissa and
y as ordinate. Each point (i, _) of these curves projected on the Y axis is situated on the
straight line (u, v) corresponding to a system of values of az and ak, which with the foregoing
values of i and _ satisfy .the equation (172). The use of the nomogram follows from this last
remark. Each straight line joining a point of the az scale to a point of the ak scale cuts the Y
axis in such a point that the corresponding values of _ and i are situated at the intersection of
the parallel to the x axis going through this point and the family of curves defined by the
second of the equations (174). 1 Thus for ak--0.008; _ffi38°; i--4 ° we shall find az=0.04.
As q is a function of az only, I have joined to the scale of az a functional scale whic_ gives
directly the corresponding values of _.2

It is to be noted that the incidence nomogram as well as the load nomogram are inde-
pendent of the fluid.mass density _. These nomograms might thus be used for the computation
of a screw in any fluid, the physical nature of the fluid will intervene only in the values to be
adopted for the coefficient k.

t For all the details concerningthis type ofnomogram see "Trait6 de Nomographie," by G.d'Ocagne, pp. 145and 324.
s The load nomogram, although established for _-0, can be used with a practically sufficient approximation forvalues of Bnear zero.
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Summing up the foregoing, for the design of a propeller, we have to proceed as follows:
A certain number of sections, whose general configuration has to be fixed, are chosen on each
blade. Practically from four to eight sections are sufficient. Having chosen the angles of
attack under which we wish our blade sections to work, for the given advance _--- V/N, the
effective blade angles _ will be found by aid of the incidence nomogram. From these values
we will be able to calculate the quantities,

H
(176) _ = r tg

for all the sections considered, and thus will be able to establish the propeller drawing _knowing
also the corresponding values of the angles _ which the zero lines make with the chords of the
blade sections. By aid of the load nomogram, _ will be calculated and by aid of the formula
(171) 0 will be calculated. Plotting the curves of _ and q/p against r2, by a quadrature of the
area obtained, one can find /1 and I, and thus Zu, La and 'I. The same method has to be
followed for the verification of the power of a screw already built, only the order of finding ¢ and i
is reversed°

The knowledge of the curves of q and q/0 gives a complete picture of the contribution of
each blade section to the work of the whole blade screw, and thus allows one to find in magni-
tude, as well as in sense, the load distribution along the blade, which has to be known for the
computations of blade stresses.

I must finally remark that the neighborhood conditions can have an influence on the work-
ing of the propeller; that is why when such an ".influence is to be expected it is good to build
the propeller with a small excess in diameter, whose progressive shortening when testing the

•propeller will easily allow us to bring the propeller to do exactly the required number of turns
N at the speed lZo The diameter thus obtained will be the one which, under the given neighbor-
hood and working conditions, exactly corresponds to the disposable power Z_.

The author has designed many propellers by the method above described and has convinced
himself of the entire availability of the foregoing method, not only for the design of propellers at
their maximum efficiency, but also for the tracing of the total efficiency curve as function of the
advance _ for a wide interval, including the maximum of the total efficiency. These computa-
tions have shown, as already mentioned, that the lift coefficients K,_are very slightly influenced
by the value of the flow velocity, but that the drag coefficients Kx decrease with the increase of
the flow velocity. The last follows from the fact that the values of K_ corresponding to low
flow velocities when used for propeller calculations always lead to values of the total efficiency
lower than thbse experimentally measured. 2

After we have learned to calculate the power developed and absorbed by a propeller, we

shall pass to the general discussion of the fundamental problem of the selection or adaptation

of propellers. THE THEORY OF THE UNIFORMSCREWFAMILIES.

I call uni/orm/amil_/a screw family whose blades can be made geometrically similar by a
twisting of all the blade sections in such a way as to bring them all to have a zero pitch. All the
screws of a uniform family thus have, at homologous distances from the screw axis, geometrically
similar sections, but their pitches have different values. I divide the screws of each uniform
family into varieties. Each variety is characterized by the fact that _ tL_ homologous blade
sections are working under the same angles of attack, and thus each variety is defined by a given

For all tha_ concernsthe blade-screwdrawing see Note V at the end of this memoir.
I will remember here that the expression (171) of the efficiency is fully independent of any hypothesis. Thus if the calculated value of the

thrust, as above indicated, will corre6pondto the experlmentollT meamn_ thrust,but the calculated efficiency will be found in disagreement with
the experimentally observed, this can only mean that the values used forthe angle Bare not _tfficiently accurate.
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system S(i) of angles of attack. Three principal varieties have'to be considered. T_e optima
or maz_m_ va_ety is the one for which all the blade sections of the screws considered are working
under the system S (ion) of their optima angles of attack. I7_e minutevariety is the one for which
all the blade sections are working under the system _1(i) of angles of attack, all smaller than the
corresponding optima angles. I7_ m_or varify is the one for which all the blade sections are
working under the system S2(i) of angles of attack, all larger than the corresponding optima
angles. Each blade screw can be considered as belonging to a certain uniform family. It is
this last remark which makes the generality of the theory of uniform families.

To the screws of a given variety_ characterized by a given system S(i) of angles of attack,
there corresponds for a given advance _--V/N, a system of effective blade angles _ and a
system of effective pitches H which we have learned to calculate. The screws of a variety
defined by a system S(i) and having to work with different advances _ are not geometrically
similar. Each screw of the optima variety, for the advance under which it has to work, will

necessarily work at its maximum total effi'
ciency, because for any other value of'the

.._ao_ advance, angles of attack different from the
• optima angles will establish themselves, all

the partial efficiencies will thus be lowered,
and the total efficiency will therefore be re-
duced. In the same way it will be easy to
see, considering the curve of the total effici-
ency _ as a funciton of the advance _ (see
fig. 28), that a major screw for its advance
will necessarily work on the left hand of the

o / _-_/fv' maximum efficiency and that a minor screw
_,. _. will work on the right hand of the maximum

efficiency. The last follows directly when
one remembers the law of variation of the angle of attack along the curve of the efficiency
plotted against the relative pitch (see Chapter II).

We shall now establish the fundamental relations which unite the screws of any one variety

belonging to the same uniform family. Let us adopt for each screw of our variety a reference
blade section, which can be, for example, the one situated on the third of the blade length
counted from the tip. According to relation (159), page 60, we have

V
(177) _--f (a_, _o,_)

with _--2_'N; H=2_r tg

For all the blade sections of the screw considered the quantities r, a/c, and i are known. The
knowledge of the advance fixes by aid of the relation (177) the blade angle _ of each blade
section; and, inversely, when the blade angle _ is known, the value of the advance under Which
the given screw is destined to work can be found. The knowledge of the blade angle of one
blade section fixes thus the values of the blade angles of all the other sections, the system.
S(i) being known. For a given screw of a given variety the blade angles of all the blade sec-
tions are functions of the blade angle of one of the sections. Let us now refer the relation
(177) to the reference blade section. We thus can write

o

V V.
-_-D _=f(_/c'_, i)



THE GENERAL THEORY OF BLADE SCREWS. - 69

Or

V
=-_f (ak, _,)ND.=

designating by } the ratio V/ND, which we wiI1 call the re/ative advance. For the reference
blade section riD is a constant, and as its blade angle _ is equal to"

t HffiH D
g*ffi-

we see that we necessarily have

(178) " _ffiA(})

For all the"screws of a given variety of a uniform family the series of the ratios of the effective
pitches of the reference blade sections to the corresponding diameters are functions of the relative
advance _.

Let us designate by L'a the power absorbed for a given value of the advance _ by the screw
of our variety whose diameter is equal to unity. We have

L'.=., V3f _ d(r n)=.'V'I'2
(179)

Let us first consider in our screw variety all the screws for which the ratio V/r_ has the same
value for all the homologous sections; that is, the screws whose diameters are proportional to
the corresponding advances• For all these screws, for each homologous section, the quantifies
ak, _o,i will have the same values; the quantities q and p will thus also have the same values.
Under such conditions the value of the integral I2 will be proportional to the square of the
diameter of the screw considered; that is, for any one of the screws considered we will have

the integral I'2 corresponding to the screw with the diameter equal to unity. Let us consider
now m our variety all the screws of the same diameter, but for different values of the advance
_. The quantities q and p will be functions of the blade angles, only, or, in other words, of
the ratios tt/r or H/D, the ratio D/r being constant for all the homologous sections. But
H/D is a function of the relative advance $ for all the screws of our variety; we thus will have

__3=/)2,_ (_)
or

Varying first the diameters for F/rf_fconst and afterwards varying the advance _ for
D fficonst we will run through all the screws of our variety. We are thus brought to the
following conclusion:

For all the screws of a given variety of a uniform family the series of the ratios 2¢'_L_/_r_V5 is
afunction o/the relative advance _.

By quite analogous reasoning it will be easy to see that the total efficiency, of all the
screws of a give_ variety of a uniform family is also a function of the relative advance _ only;
that is

(tst) .ffi
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The functions A(_), B(_), C(_) are characteristic for a given screw variety defined by a
system S(i). If we calculate a series of screws of a certain variety we will be able to trace
point by point the curves

For each system S(i) of angles of attack we will get a group of curves. We will arrive at a
full picture of the properties of a uniform family when tracing a system of three groups at
least, of curves A(_), B(_), and C(_): A first group of curves, At, BI, Cl, for a minor variety,

\
I.o

t_ _" _

,",),

o
,O.O 0.4 0.5 06 OY 0,8 Q.9 7

a second group of curves, A, B, C for an optima variety, and a third group of curves, A2, B2,
C2 for a major variety. Such a system of curves corresponding to a uniform family is rep-
resented in figure 29.1 This system of curves gives the complete solution of the problem of
the selection of a propeller. In fact, suppose-we have to calculate a propeller to absorb a
power L_ at the advance #. The quantity N2La/Tr_V 3will be calculated; and on the curves
B1, B, B2, will be read three values of _-- V/ND, from which will be deduced three diameters

1This figure correspondsto a uniformfamily of air-screw ofthe ,, Dorand,, type with constant constructive pitchalong the blade. See G. Eiffel,
"Nouvellea Recherehes sur la reatstanco do Fair et l'avlation fai_tesau labo_atoire d'Auteutl," atlas_ Plate X_K_KIII, _. figure 29 the curve HID
is referred to the constructive pitch,
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/)1, D, D 2. To the three abscissae _ will correspond on the curves A1, A, A 2 three values HJDI,
H/D and H2]D_, and on the curves C, G, G2 three values 7, 7, 72. Knowing D, D, D2 from
the ratios H_/D1, H/D, HJD2, we will find three values H_, H, H2 of the pitch. Plotting on a
diagram D, D, D_ as abscissae and H_, H,//2 as ordinates we will get by three points a curve
on which, by interpolation and by extrapolation (not carried too far), we will be able to read
all the system of pitches H and diameters D of all the' screws of the uniform family considered
which satisfy the conditions Of given power L_ and advance _ _ V/N? (See Fig. 30.)

We thus see thatto the data LG and _-_VIN there corresponds an infinity of propellers,
among which we have to choose the most convenient for the application considered. The
following considerations have to be taken into account. The efficiency of major screws goes
on increasing in a certain interval when the advance increases, and the efficiency of a minor
screw first increases when the advance decreases. Thus a propeller for a tug has to be a major
screw in order to be able to give good efficiencies over a large scale of loads. The propeller of
a trans-A.tlantic ship has to be'an optima screw, for the maxima ship speed and the number of
revolutions of its engines. An airplane pro-
peller has to be a minor screw, to be able to
maintain a high efficiency when climbing. /-f
In practice we are often limited by the space
disposable for the propeller. In such cases

there will only be left to us to approach as i_-_)
near as possible the most favorable screw \type. "

When we have to choose the propeller _)
for a given application the great unknown
of the problem is generally the head resist-

ance or drag of the vehicle to which the pro- •• __. _-_.)
pellet has to be adapted. This is why one
must proceed as follows. We will determine
either the minimum speed which we can ex-

pect from the vehicle and calculate for it a O
major screw, or the maximum speed expected F_o.3o.
from the vehicle and calculate for it a minor

screw. The testing of the vehicle with such a testing screw will, with full certitude, indicate

the speed which our vehicle can realize with the disposable power. If our first approximations
to the speed of the vehicle should in the first testing appear to be far from the observed speed,
a second testing screw would have to be used. Once having found the exact order of the
vehicle speed magnitude compatible with its power, we will then have only to calculate the
definitive screw which corresponds to the conditions L_ and _ -- IT/N and which this time
will have to be a major_ optima, or minor screw according to the screw application consid-

' ered. Proceeding as indicated above, we will with full certitude find the very best screw
which the case considered can admiL

The demands of the strength oi the screw blades will fix the limits between which diagrams
for screw selection can be established. It will usually be found necessary to establish a series

of diagrams fbr increasing power intervals. _ series of such diagrams gives the complete
solution of the screw selection problem in its whole generality. For the important applications
of blade screws it will be good, after having found the screw dimensions by aid of the screw

1 _l Sheg_leral case we will have asmany points of the H curves as functions of D, as groups of c:urves A, B, Chave beeu traced,
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selection diagram, to try by a series of calculations of the modified screw to improve its qualities.
The author hopes that he will have the pleasure of seeing in the near future the spreading of
the use of such screw selection diagrams for different uniform families, by aid of which _ll be
eliminated all the di_culties of the delicate problem of selecting screws.

The screw selection diagram allows one also to judge of the influence of the variation of
the number of revolutio_ on the efli6ieney of a propeller. It will be advantageous to
use gearing only when the increase in eflleiency is able to compensate the losses in the gears,
if only the space disposable for the propeller or other conditions do not oblige us to use gears.
It must be noted that, although the emciency of a propeller increases generally when its number

i

,7 \
\

4 _. ......... ___.o o o_, . _o

l _

FZG.8J.,

of revolutions is decreased, this increase, however, is not very large. Thus for the speeds of
actual airplanes included between 100 km./hr, and 200 km./hr., and numbers of revolutions of

• the actual aviation engines included between 1,000 and 2,000 revolutions a minute, it is only
exceptionally advantageous to use gears whose losses are generally greater than the gain in
efl_cisncy. The gearing up of a screw brings also with it an increase in size and consequently
an increase in we_ht of the screw. On the diagram reproduced here (see fig. 31), by aid of
the screw-selection diagram of figure 29, for a number of revolutions from 600 to 3,500 a minute,
for an invariable power of 240 horsepower applied to the screw axis, there are calculated the
efllciencies _, the diameters D and the pitches H of the whole series of corresponding minor
screws. It is easy to see that the dimensions of the propellers go on increasing much more
rapidly than the efficiency when the number 9f revolutions decreases,
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NEW METHOD OF MEASURING THE COEFFICIENTS OF FLUID RESISTANCE BY AID
OF THE PLANE RADIAL SCREW.

In the last chapter, for the screw working at a fixed point we have established the
following system of formulm:

nb 2 sin 2(_-io)'
(105) .a=_-_ffi_,cos(_+_o)

tg(_-Q)

(106) po= tg (_ + _o)[1 + 2 tg (_-io) tg (_ + _o)]

(107) Vo= rOopotg(_+ _o)

(108) r_offi2r_opotg_(_ + _o)

(109) . AQo ffi2_hSvJ = 2_hS_Oo2pg tg 2(_ �_o)

(110) A00ffi28raSr_aJpJ tga(_ + _o)

(111) poaohOoffivoAQo

and we have shown that the angles of attack io of the different blade sections are constant,

independent of the angular velocity of screw rotation, these invariable values of the angles ot
attack being given by the relation (105).

Let us consider a screw defined by the conditions
!

_ = eonst
(182) a = const

k_-- const

all along each bIade. From these conditions it follows that

io= const; po-- const

along each blade.
The condition _--const expresses the fact that the screw blades are not twisted, having

a constant blade angle.
The condition a fficonst expresses the fact that each blade is limited by two radial straight

lines.

The condition 7ct--const expresses the fact that aI1 the blade sections are geometrically
similar. The thickness of the blades must thus go on increasing from boss to tip proportion-

ally to the dmtance from the screw axis.
I call plane-radial screw a screw whose blades satisfy the foregoing conditions (182).
It is easy to see that for such a screw the equations (109) and (110) can be directly inte-

grated and we have
(183) Qoffi_po_o_tg _(_ +&) [r,'-r,']

(184) 6'o='/s_spJ_Jtg 3(_ +_o) It,6-'r/] 73

a
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r2 being, the screw radius at blade tip and r, the radius of the boss. The ratio of Co to Qo is
equal to

GO,__ 4 r25 _ 7'1_

(185) _oo- /6tg(¢+$°)r; %'

We will show that the empirical quantities k_ and/_ or Kx and K_, which correspond to
the blade section profile used for the blades of a plane-radial screw can be measuerd by test-
ing the plane-radial screw at a fixed point and measuring its thrust Qo and torque Go.

In fact, knowing %, r2, Qo and Go from relation (185) we find the value of tg(w-F/3o).
Knowing tg (_ +/_o) from relation (183) we find po.
Knowing tg (_+/3 o) and po from relation (106) we get tg(w-io).

Knowing tg(_+flo) and tg(w-io) the relation (105) gives the value of k_.
Let us designate by _ the constructive blade angle, that is, the angle between the chord

of the blade section and the plane of screw rotation, by _ the constructive angle of attack and
by 7 the angle between the chord and zero line of the blade section considered (see fig. 32).
We have:

(186) ¢p=_-F7
and

(187) io ffia + 7

.
Flo. 32.

Suppose that, having measured Qo and Co we have found

(188)' _+_o=#+_+_o=c,

(189) ¢-- _o=_+7--io=_--,_=c,

The angle¢ beingknown, we willhave
(190) a=#-c_

Knowing thus for each value of # the value of 7c_and the corresponding value of a, we
shall be able, by a series of tests made with different values of _, to trace the curve of 7c_as
a function of

k, = F(a)

The intersection of this curve with the axis of abscissae will give us the value of % and we
shall thus be able to calculate the values of _o and io which correspond to each value of _b.

(191) _o-=cl-- _'--'Y

(192) io=c,--_--'y
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We will thus obtain all the necessary data for the tracing of the curves of k_ and _ as functions
of i; or, if we prefer the curves of K_ and K,, these can.be directly deduced from those of
k_ and' _.

We thus see that for the measurement of k_ and _ or K_ and K_ as functions of i, it is
sufficient to take small plane-radial boards, whose cross sections have the profile to be studied,
and to fix them to a boss permitting one to use them as blades under different values of the
constructive blade angles"¢. Measuring by a series of tests Qoand Co for different values of
_bof such a plane radial screw, there will be found, as explained in the foregoing, first the series
of corresponding values of k_as functions of a; afterwards, _, having been determined, there
will be found the series of corresponding values of k_ and _ as functions of i.

I will not stop here to give the details of such experiments or to discuss the precautions
to be observed for the exactitude of the measurements.

The importance of this experimental method consists first in its experimental simplicity,
since we have only to make measurements lipon a screw working at a fixed point; and, further,
it _s _he only method which a_ow_ measurements at the same great values of _peeds of flow and in
exactly the same blade-screw conditions as in actual use; and this in any fluid, water, air, etc.
The use of this method will without any doubt allow us to elucidate many questions of first
importance about fluid resistance at high velocities and in different fluids. 1

Although it is not my intention in this first memoir to treat the question of the screw
working at a fixed point, to which a separate memoir will be devoted, I will, however, give a
brief summary of the properties of the plane radial screw, which it will be interesting to note,
and which will show in what measure the present screw theory can in reality treat any case
of screw-working, including the ease at a fixed point, which has. always been .considered, up
to the present, as the most difficult to investigate.

GENERAL PROPERTIES OF THE PLANE-RADIAL SCREW WORKING AT A FIXED POINT.

When we have to do _rith a blade screw working at a fixed point, its efficiency po is the
,quantity which measures for the screw when advancing its fan losses. The losses of a screw
at a fixed point thus reduce to the vortex losses Pt and resistance losses p,. For each blade
element we have

_o

(193) p,= =2p°tg + &)
(104) p,= 1 --P.-Pt = 1--po[1 +2 tg_ (_ +_o)]

Let us examine briefly the conditions of maximum of po. If we note that po is an increas-
ing function of i o SO far as _o is nearly constant, and that _o is a very rapidly increasing function
of i for io_i', but that for io>i' the variations of _o are small, it will be easy to see that the
maximum of po will occur for io_---i' and _o-_0. The conditions of maximum of the efficiency
of a blade screw at a fixed point are thus the same as for a blade screw when advancing. We
have

tg (_-i')
(195) pom_=

tg +2tg tg

In figure 33 have been traced by aid of this equation a series of curves of the efficiency po== as
functions of _ for different values of io= i'. It is easy to judge by aid of these curves about the
maximum which the efficiency pom_can reach.

According to an agreement which has been made between the author and the National Advisory Committee for Aeronautics, the author
has permanently withdrawn from the United States Patent Office his pending patent on plane-radialscrews, and h_ thus abandoned to the Public
Domain the use of the plan_radial _crewin the United States.
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When, for a blade section of a _dven profile, values for @and Q have been adopted, by this

fact the value of the breadth will b_ fixed. In this same fi_o,_re33, by aid of equation (105),
a series of curves of the breadth ratio have been traced as functions of _ for different values of

_o-_, and consequently _o = 0. On the other hand, the limiting value of the breadth ratio is
fixed by the relation (134) of Chapter III. The c_.rves of the breadth ratio are thus limited
from above, as a first approximation, by the curve of sin _ (see fig. 33).

@

O

Fro. 33.

Finally, on this same figure 33, for the purpose of a quick calculation of the slip velocity

vo = rf_opo tg ¢,

has been traced a series of curves of po tg _, as functions of _ for different v_lues of {o=_', and
thus _o_0.

It has to be noted that the curves of figure 33 are independent of the fluid density'. '
Let us in formula_ (183) and (184) put

¢D
(196) r,=cr2:-_-

D being the diameter of the screw considered, aad substitute _2o:27rN. These formulm can
then be written:

(197) Qo:_ _ (1-c') _p2 tg 2 (_+_o) N2D' "

(198) aoOo=L°'- _/_ r' (1 -c 5) _po_ tg s (_+_o) NSD5
1-c 5

(199) ='15 _r_ Qo tg (,P+$oi ND
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Let us give a quantitative evaluation of these last formula. According to figure 33 it
will be easily seen that we will have good worl4ng conditions adopting:

,p=15°; io---6°; a--0,25; p0=0,55

Introducing these last values in the formula (197), (198), and (199) and considering 80--0 and
ffi_ (air density) and neglecting the high powers of c, we get

(200) Qo=o,o21 _D _
(201) Lo=O, 014 NsD s

(202) LoffiO, 67 QoND "

From the last follows

Qo_0' 3 D2
(203) Lo--, 36_L_
and

._ 3/_
(204) ;v=4,_ _¢_

,_ . / /

.. , , ,. : /;._

_eo: " ..... ( _,/

i

" I .' ,l'' ! . ['-" | .... a

.'0" '¢ _._" ,_, _' ,._ _¢/ "_ir ,_ _,_ _I_.

"\ On figure 34 is represented according to the relation (203) a series of curves which give
Qo/Lo in kilograms per horsepower for a plane-radial lifting screw, as function of its diameter
D, and for different values of Lo. The power Lo has been successively taken equal to 1, 5, 10,
50 and 100 horsepower. On the same figure, by aid of the relation (204) have been traced the
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curves corresponding to N--const for different values of N. We thus see that the thrust
furnished by a lifting screw increases with the increase of its diameter, with the decrease of
its number of revolutions and with the power. It _ thus the screws of s_a_ powcr and _rge
diameter which tur_ s_Zy that win :prove th_ best Zifling screws.

Let us calculate also, for the case of air-screws, their blowing capacity. Let us designate
by U the number of cubic meters of air that a _an can blow in a second. We have

Uffi 2_rdrVo
J r_

._o ,.. I k /"
=..i " I,,_._ \ /

/ /..... i ' "_

.... _ \ / ><,-"

,5_',\\ <,,,..__ <......_

'DO / _ ,_ ,¢ "¢" 6" ,7 _ ,9 /0

Fza.

and substituting for Voits value we get:

PU= 2fpo_o tg (_ + 80) dr;
J rl

and integrating we find

U-- _ (1 - cs) ootg (_ + 80) ND s

and substituting finally the numerical values adopted above, we find

U= 0,24 ND3
and

_=_z-:,
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By aid of this last relation the curves of figure 35 have been traced and they indicate the value
of U per horsepower as function of the diameter D for different powers. A second system of
curves gives the corresponding numbers of revolutions. We see from these curves that for
fans, as well as for rifting screws, it is the fans of _nall power, large d_ameter and slow rotation
_hat furnish the best .blowing action.

The plane-radial screw is thus able to furnish good lifting screws and good fans and its
simplicity makes it specially fitted for many applications.

Thus, for example, (see figs. 34 and 35) with a plane-radial screw working 10 turns per
second, that is, 600 turns per minute, we will be able to get:

L, = 1. 5 10 50 100 h.p.
D_---1.4 1.95 2.50 "3.10 3.50 m.

Q/Lo_--8 6 5 4 3 kg./h.p.
U/Lo_6 • 3.5 2.5 1.3 1 m2/h.p.

Qo= 8 30 50 200 300 kg.
U= 6 17.5 25 65 100 m2

' In the practical realization of plane-radial screws one will certainly not be obliged, since the
screw is not used as a measuring instrument, to adopt the condition k_= const, that is, the screw
will be made with a thickness decreasing toward the blade tips. All the formulae established
in the foregoing can be used as a first approximation. In a memoir which will follow the present
I will treat in full detail the different kinds of lifting screws and fans and indicate the methods
of their design.

G_ORG_.D_. Bora_zAr.



NOTEL

THETHEOREMSOFMOMENTUMANDMOMENTSOFMOMENTUMIN THEIRAPPLICATIONTO THE
STEADYMOTIONOF FLUIDS.

The theorems of momentum, moments of momentum, and kinetic energy have been called
the three universal theorems of mot._onby Paul Aiopell , in the sense that they can be applied to any
mechanical system The first two of these theorems are expressed by the following system
of equations: t

d 0Ix

d_/ dx\
at = zz(re-vX.)

d{ -x'm-d-{/= z z (zXe-Z go)h
d _/ dz dy'X

z z (vZe- z Y.)

or, in vector notation: 2

d d F• (1) d--{_mv = F; -d-{_,r. mv=R.

F being the resultant of all Sheexleriorforces applied to the system considered; _ m-_ the geomet-
rical sum of the linear moments of the system; Z r-m v the resultant moment of momentum of the

system; R. F the resultant moment of all the exterior forces; these last moments being taken "
relative to a point invariably connected to the absolute reference system.

Let us consider a fluid mass in a steady state of motion, and let us apply the above-mentioned
theorems to the portion of a stream tube included between- two of its orthogonal sections St and
82. Let us calculate the increment of the fluid momentum included between those sections.
If, at the moment t the fluid occupies the portion of the tube between St and $2, at the moment
t + dt this same fluid mass will occupy, the portion S't 8', of the stream tube (see Fig. 36). The
motion being steady, the momentum of the fluid mass (III) common to both volumes St $2 and
S:t S'2 will remain invariable. The increment of the momentum of the fluid mass between
S, and $2 will thus be equal to the difference of the momentum of the fluid mass II and I. This
last difference is equal to

t See "Trait_ de meeaulque rationelle," Tome H, J-. ]_dition, par M. Paul Appell, pp. 19 et 24.

• For vectors I use the notation A'---s horizontal line over the letter representing the vector;, for the vector product the notation A.--_--a hori-

zontal line over both vectors of the product; for the scalar product the notation A-. _, that is, the same notation as for the algebraica| product of
two scalar quantifies.

8O
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where mt represents the fluid mass which flows in a unit of time through an element ds of section
81; % the flow velocity at the same element, with similar notations for S,.. We thus have

(2)

By a fully anatogous reasoning we find

d
(3) "_ _r.mv== • (r_mv2--r,.mvl)

/

• -

Let M be the total fluid mass which flows in a unit of time through the stream tube con-

sidered, and let us define two vectors Vt and V2 by the [ollowing relations:

(4) i Mr, ffi Zt mtv"--'-t/V_.?_-v_= z, _. my, { MV,=Zm,v,g

When, to a sufficient approximation, v, and _ can be considered as uniform in the whole section

of. St and S= we shall have

the vectors -Vt and -V_ being applied to the centers of mass of St and $2.

On account of the relations (2), (3), and (4)/he equations (1) take the form

MV2 - .MV, = F

R,.. M_ - Rc MV,= R. F
or

P+ .uv, - MV,=o,
R. F +'Rx. MVx - R,. MV,= O,

and this brings us to the following theorem:

For a fluid mass i_ steady motion, the resultant wrench of all the exterior jbrees applied to a
portion of a stream tube limited by two cross sections and of the resultant screw of the inflow momentum
(the outflow momentum having to be taken in the reverse sense) is equal to zero. (See fig. 3T).

t It ISsupposed on this figure that the resultant screw of the exterior forces is reduced to a resultant force.
132025--19--6
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In the application of this theorem special attention must be paid to the importance of
taking account of a_ the e_r_rf_rc_. For a stream tube portion these exterior forces are not
only the _ 2rr_res, but also the tangent_ stresses exercised on its boundary surface.

As the preceding theorem can be applied to each stream tube, it win be easy to see that
we can also apply it to any system of stream tubes. We are thus brought to the following
theorem:

For a fluid mass in steady motion, the resultant of the resultant wrench of aU the exterior forces
applied to a portion of the fluid mass inclosod in any closed surface and of the resultant screw of the
inflow momentum (the outflow momentum having to be talcen in a reverse sense) is equal to zero.

When one or several bodies are plunged in the fluid mass contained in the closed surface
considered, the pressures of the bodie_ on the fluid have to be considered as exterior forces for the
fluid mass considered.



NOTE H.

GENERALIZATIONOF BERNOUILLI'STHEOREM.

For the determination of the pressures in a fluid, we possess the Bernouilli theorem, which
furnishes us the law of variation of pressure along a stream line and also along a vortex line. We
also know that the Bernouilli theorem is applicable to the whole fluid, considering the Bernouilli
constant as invariable, when the fluid motion is irrotational. But in the general case, when we
go from one stream line to another, the Bernouilli constant changes its value. What is the law
of variation of the Bernouilli constant in the whole fluid mass in the general case _._ It is the
solution of this question that the present note gives. We so arrive at the general solut.ion of
the problem of the pressure distribution in a fluid mass.

Let us consider a fluid mass in a steady state of motion. Let us consider in this fluid mass
the stream line curves and also two other families of fundamental curves: the normal lines,

defined by the property that the tangent at each point to those curves coincides with the prin-
cipal normal of the stream line through this point, and the binarmal lines, defined by the prop-
erty that the tangent at each point coincides with the binormal to the corresponding stream
line. The stream lines, the normal lines, and the binormal lines form a system of triorthogonal
curves. 1

Let us consider a fluid element contained in the elementary paraUelepiped, whose edges• •

d_, dr, dE are respectively directed along the stream lines, the normal lines, and the binormai
lines. On these curves we choose the following positive senses: on the stream lines, the sense

of the velocity of the fluid particles; on the normal lines, the sense toward the center of CUlT-
ature of the corresponding stream fines; on the binormal lines, the positive sense is chosen in
such a way that the trirectangular tr_edral (dr, dr, d_) is positive.

Thee curves have for equations:
The stream lines

dz dj/ dz.-_-_
The normal lines

,b dy dz

The binormal lines
. dz dy d.z

_ "_ ""0

In _he_ equations u, u, w are the components of the velocity of the fluid and A, B, C the determinants of the matrix

dldt dt
For example

A dw dv
- v-_- w_

du dv dw
expressions in which _, _, d-t are the total derivatives, for example

Ou Oe OtO

Zt-uS-z+_+w_
the motion being steady. ,

83
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Let us apply the d'Alembert principle to' the fluid element dr, dr, dE and let us consider,

for the sake of simplicity, the fluid as incompressible and having no weight (see fig. 38). The
resultant of the exterior pressure on the fluid element has for components:

-_dr dv dt3 along J7

-_d_ d_ dE along dv

-_dr dv dE along, d_

t' bein_ the pressure at the point considered,

| _I "_

,b

The resultant of the forces of inertia applied to that element has for components

d_$ dr dv dE along dr

-_-- 8 dr dv dE along dv
P

' 0 along dE

5 being the density of the fluid at the point considered, V the velocity and p the radius of the
principal curvature.

According to the d'Alembert principle we must have

(1) _,.,. ,__.._--v=o '

(2) _+5-_ _o

5p -0
(3) _ -

Th_ system of relations represents the equations of motion of the fluid referred to the tri-
orthogonal curvilinear system of stream lines, normal lines, and binormal lines, which can be
called the nat_l.ra.Zcu_ilinear coordinates of the fluid, or, shorter, 'the natural coordinates of the
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Ii The equation (1) brings us directly to the Bernouilli theoren; we have

_p__dV b__p.,dVdr _.,._vdV
_+_-3y=5.T_-_;_/=_.-- - -37=0"

and integrating along a stream line, we get

_V 2
(4) P +-_- = _'

a relation which constitutes the Bernouilli theorem, G being the Bernouilti constant.

II. The equation (2) gives us the distribution of pressure along the normal lines. Inte_
"grating this equation along a normal line, we get

fv,(5) p+ 8--dv=Op

This last equation is susceptible of the following important transformation: 1
Let us designate by _,, _,, o_a the components of the vortex and by 1_5, l_, Va the

components of the resultant velocity V along the directions dr, dr, dE, at the point considered.
We have '

v,--V; 1I, =0; va =0

The relations between the double of the components of the vortex $ and the components of

the velocity are given by the determinants of the matrix

(6) b_ _p i)t_
V,V, VB

we thus have
bV, 5V,

(7) 2_-- b* by

or

(s) _- ,:.,a = _ =-3;

t By aid of relation (5) the pre_3t_ distributinnin a slip strcam cro_ section as 8", for example, can be calculated. For such a calculation
we can admit as a first approximation that the element_ of the trajectories of the fluid particles in section 8 n are elements of cylindrical helicoidal
curves. Under such conditions in the section 8 x the normal lines will be radial straight lines normal to the screw a._s and we will have

dr--&_'

and r"

P-- c-'_--_a ; W_cca at--#'_"

being the inclination of the element4_ of the helicoidal tra|ectories to the plane of SCrew rotation and ;;r_ the velocity of the fluid particles m
the section 8 _. Substituting these values in equation (5) from above we get:

• P= po--_fP%'Mr _

where pe is the pressure on the boundary surface of the slip stream, $ the fluid density considered constant for reasons already mentioned.
Knowing the law of distribution of _m in the section 8 n, the curve of &a't/2 will be traced as a function of r _*. The quadrature of the surface
limited by this curve will give the law of prea_sure distribution in a cross section. The general course of such a pressure distribution is repre-
sented on figure 2 of the first chapter. For a more accurate calculation it would be necessary to know the radii of principal curvature of the
stream lines along a normal line.
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On the other hand (see Fig. 39)
5 V_ Vao V

(9) -_;=-_-=
511,

dO being the eontingence'angle.Substitutingthislastvalueof_ in the relation(8),foran

integration along a normal line we get
dV

(10). dr=- V-
- - 2_
p

and substituting this "last, value of dv in equation (5), we get

(__) .p+ ['jvav-- = c

3 _B
1-2_Vv-

I/

i/° // .I

/" '6r'_

k t

FIG. 39.

The integral of this last relation is susceptible of the following transformation:

f f [(
VdV _VdV 1- l-2p + 1-2p- V

• _B

=f, vdv- ("VdV'25--V

f _VdV
= _-_- vv_l

2poo_
and equation (11) takes the form

f 5vdv
'v"=

(12) P + --2 d2---_ B-

which fixes the distribution of pressm'e along the normal lines.

We easily see that the last equation has the, form, of the Bernouilli equation, only the integral
which figures in the second member determines the variation of the Berno_t.i_Ti cern._tant when we go
from one stream line to another _ng a norm.al line.
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If we put
p 8VdV

(13) AOf J Y-_-_-
equation (12) _akes the form

5V 2
(14) p+-_fO+A_

We now see it is sufficient that _affi0 along a normal line--which means that on the"

normal line considered the vortex _ is disposed in the contingence plane--for the integral AC to
• be equal to zero and the Bernouilli constant to be invariable along this normal line. It is evi-

dent that _a is zero when _--0.
The integral AC can be written in the form

(15) _0---- 1
j .

and is then susceptible of the following geometrical interpretation: The denominator of this
integral represents the difference between the inverse of the speed which the fluid particle would
have if rotating with the angular velocity 2_p around the center of curvature of its instanta-
neous position and the inverse of the velocity V of the particle.

III. The integration of equation (3) along the binormal lines leads directly to the con-
clusion that along those lines
(16) p fficonst

that is to say, in the case of a non-heaw fluid, the binormal lines are isobars. It will be easily seen
that in the ease of a heavy fluid the distribution of pressure along the binormal lines will be the same
as if the fluid were immobile.

We also see that for the case of irrotational motion of a fluid the bin(nqnal lines are also the

lines of constant velocities, the Bemouilli theorem being applicable to the whole fluid mass.
The system of relations (11)_ (12), and (13) fully determines in the general case the dis-

tribution of pressures in .a fluid mass in motion. This system of relations leads us to the
following consequences, which I will indicate in general outlines:

L It is enough to know the distribution of pressure along a surface c_utting all the binolw_al line._
in order to know the distribut_m of pressure in the whole fluid mass,

This proposition is a direct consequence of the fact that the pressure is constant along a
binormal line.

II. On both s4des of a vortez layer, even thin, there can exist a dijference of "pre._sure which cal_
be q_" sen,s_ble value.

To convince ourselves of such a possibility, it is sufficient to represent a vortex layer in
which the quantity

V- 2_

has a small value inside the layer, which can happen without V or _ having excessive values.
Then. when traversing the layer along _ normal line, the integral

f SV_dV

can have a'large value and consequently, according to formula (11) the difference of pressure
on the two sides of the layer will be sensible.
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The conception of a thin vortex layer maintaining sensible differences of pressure allows one
to understand the phenomena which take place in the slip stream created by the rotation of a
propeller. Let us follow a stream line in the slip stream (see fig. 40). When we reach a point,
such as B, disposed before the propeller, the pressure p must necessarily be lower than the

exterior pressure To, because the velocity is all the time increasing as we approach the propeller
and at points such as A1 and A2 we have pressures very close to the pressure p. But when we
go through the plane of screw rotation, the pressure increases and at a point such as C disposed

\

\ /

•
FIG_ 40.

directly behind the propeller, the pressure p' is generally greater than the exterior pressure.
It would be difficult to conceive the existence of a difference of pressures p' and p at points C
and A2, ff it were not for the vortex layer, which consequently must constitute the surface of
the slip stream created by the screw, and which we know capable of maintaining differences of
pressure. Without the knowledge of the existence of the vortex layer forming the" surface of
the slip stream the pressure distribution around a propeller would be difficult to conceive. The
exact colffiguration of the boundary surface of the slip stream demands further investigations.



NOTE HI.

SHORT SUMMARY OF THE EMPIRICAL LAWS OF FLUID RESISTANCE OF AEROFOILS.

Let us consider a cylindrical surface generated by a rectilinear generatrix moving parallel
to itself along a plane contour formed by two intersecting curve segments. Such surfaces are
generally eaUed aerofoils in aerodynamics. The orthogonal section of the aerofoil is called its
profile. On figure 41 is represented in plane and profile such an aerofoil of rectangular peri-
meter of breadth b and span L.

Let us consider an aerofoil plunged in a fluid medimn and moving in the last, normally to

its generatrices, with a uniform and rectilinear velocity W, or let us admit that a fluid current

of uniform velocity W is directed in an inverse sense on the aerofoil maintained immobile.

In .both cases, on account of the principle of relativity
t of hydrodynamics, the aerofoil will be acted on by a re-

-,- - sultant fluid resistance R. When the aerofoil has a plane

'--1 -- .-7.:Z:--_-:-22--:=_:: of symmetry normal, to its generatrices and the flow
......... --- velocity W is parallel to this plane, the fluid resistance

-_-_-_, ..... /_-is then disposed in the plane of symmetry.
---."_-3-_2 -- ;7-- __ The fluid resistance R of an aerofoil obeys the follow-

2-_-.7____.- ing empirical laws:
.... _g'* -- I. R is proportional to the area A of the aerofoil.

...... V- __.._7.--- :Z-L---_:-_.-. '2. R is proportiofial to the square of the velocity W.

.... --r, 3. R is a fuhction of the orientation of the aerofoil re-
"i'" lative to" the flow velocitv '_1-::.

......... ._.................. 4. R is proportional to the fluid density _.
....................... These empirical laws are submitted to the following

.... R- _ -."_y ..................... restrictiorxs: " ' "

"" _i_'_" ..................... The proportionality of the resist_mce R t.o the area A, .:, ............. holds true only for aerofoils of similar perimeters and of
,';2_[:-- ......... g_-- the same order of size. If we imagine a series of acre-

- -__'"_ _ .............. --_-_-_-_-_'_-. foils of breadth b Whose span L goes oIt increasing, it will

::_"_-"_'___-- ..................... be found that the ratio of R to A tends toward a certain
m _

::-- ......................... limit when the aspect ratio Lib increases. Practically
F_o._L this limit is already reached for values of the aspect

ratio near five or six. The existence of a limit for the ratio R/A depending upon the

aspect ratio is due to the fact that the flow runs off, as it were, from aerofoil tips. But
with increasing aspect ratio the tip influence rapidly decreases and the ratio R/A tends to
its limiting value corresponding to an aerofoil with infinite aspect ratio. Thus, for a sufficient

aspect ratio _fll area elements like hA will be in practical|_- identical ttow conditions and the
total fluid resistance R can be considered as the sum of equal partial resistances AR due to

_,_eh element 5A (see fig. 41).
The proportionality of the fluid resistance R to the square of the velocity ll" is true only

for variations of W in certain intervals. The component R, of R along lV is generally called

drag, and the component R_ of R along the normal to W is called 1.i.ft. It has alrea_ty been
observed by experiment that the ratio R_/W ? does not vary much with W. but that the ratio

R_I W _ decreases with increasing W. S9
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As for the dependence of resistance R upon the orientation of the aerofoil in the flow,
the following facts are to be noted: There exist in general four orientations of the aerofoil in the

flow for which the resistance R reduces to the drag Rx only. I call zero plane i the plane parallel

to the aerofoil generatrices and containing R when R_--0. It is by the orientation of the
zero plane corresponding to the entering edge that we shall fix the orientation of the aerofoil

relative to the flow. We will call angle of a.ttad¢ or incidence and will designate by i the acute
angle between the velocity 1t: and the zero plane adopted. We shall call zero line the trace of
the zero plane in the plane of symmetry (see fig. 42).

At the present time it is customary to fix the orientation of aerofoils relative to the flow by
the orientation of the chord of their profile. It must be noted that the notion of a chord is
defined in geometry only in relation to arcs of curves and in reference to an aerofoil it needs a

special definition. For a profile such as the

\ N one represented in figure 43a the chord instinct

N.\/.\ If ively adopted is theprofile.Chordcommoh to bothfor a profile
such as the one represented in figure 43b we

can draw two such chords. Finally, for a pro-

file such as the one of figure 43c any straight

line crossing the profile could be with equal
propriety adopted as the chord. We thus see

• . . ,, _. _ that what is commonly called the chord of a

profile is in reality a 'straight line arbitrarily

• " chosen. When it concerns the experimental
measurement of fluid resistance of aerofoils,
the more convenient reference line has to be

taken. But when we wish to proceed to the

comparison of the results obtained, it is nec-

essary to have a standard reference line whose
definition is based on aerodynamical or hydro-

FI_.42: dynamical facts. The zero line introduced in
the study of aerofoils by Paul Painlevd consti-

tutes such a uniform basis fro' comparisons. The right understanding of the above explanation
is of particular importance for the blade-screw theory. The conception of effective pitch, which
is a direct consequence of the notion of zero line, at once (;lears up many misunderstandings,
such as negative., slip, for example.

Finally, the fluid resistance is proportional to the fluid density $. This resistance thus
depends upon the temperature and pressure of the fluid considered. ..

We thus see that the fluid resistance R of an aerofoil can be expressed by the formula

(t) R :kOA W 2: K_A W _"
with

In this formula, ]_iis an empirical function of the angle of attack which depends upon the
perimeter and the aerofoil profile and up.on the kind of fluid considered; A is the area of the
aerofoil, or speaking more exactly, the area of the projection of the aerofoil on the zero plane;
Wis the flow velocity relative to the aerofoil. The formula it_elf is true only for a certain inter-
val of velocity variation.

The zero planes have been introduced into the ,qtudy of laws of air resim_uce of aerofoils by Paul Pa_lev_, who called them "fictitious planes."
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For small angles of attack we can, with a sufficient approximation, adopt

(2) g = kSA W*i = KA W_i
with k8 ==K

For t_iost aerofoils moving in air the coefficient k has the mean value

(3) k_----_-5 = 0,04

the angle i being expressed in degrees, the area A in square m_ters, the velocity W in meters

per second, and the resistance in kilograms. For mean conditions of temperature and pressure
the coefficient K has, thus, for its mean value

1
(4). K= k_ = 0,04.0,125 = 0,005 = 2_

.All the foregoing relates to the magnitude of the fluid resistance R. As for the position and
orientation of the fluid resistance _ of aerofoils the following takes place:

/ //*'

7

/

FIe. 43 a. FIG. 43 b. FIG. -t3 c.

We will fix the orientation of R by the angle this force makes either with the zero plane,
or with the normal to the zero plane. The first of these angles will be designated by B', the so(--

end by/_ or/_T. The senses adopted as positive for these angles are represented in figm'e 4:_°
These three angles are connected by the relations

71"___!(5) _H= 2 = _ - _

In cases where no confusion will be possible, we will simply write/3 instead of _H or _.

We will fix the position of the resistance/_ relative to the aerofoil by the dista_lee of its

point of intersection with the zero plane counted from the projection of the entering edge ,)n
the zero phme and will call this point con,tot of pres,w, re.

For interva_ of variation of the velocity W not too larffe, the angle _ and the lJoMtio_ of the ce'nter
of "Fressure' are independent of the value of W and are functions of the angle of attacle i only.

When the center of pressure is defined as the intersection of the fluid resistam'e/_ and the

chord of th(; profile, this last center of pressure moves into infinity for a certain value of t|w
angle of attack. This takes place at the moment when R is parallel to the chord. Such a
displacement of the center of pressure is due only to an inappropriate definition. _Vhen our
definition of the center of pressure is adopted, this point tends toward a definite limit when

the angle of attack tends toward zero)
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In experimental aerodymanics it is customary to consider the fluid resistance B decomposed
into its two components the drag B_ and the lift B_. We have

Rx/ R sin (t_ +i) =/_A W' sin (0_+ i)
R,, = R cos (0_ + _) ffi K_A W 2 cos (t3E+ ¢)

• When tile angle OHis a function of the angle of attack only, we can write

(6) R_ ffiE_A W'
(7) R. =/_A W_

• i_ooO'eO" ,dO'_ ° 80 °/,_:_°leO°/40"t'GO*/_o/_o.
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FIG. 44. FI_. 45. FIG. 46.

expressions in which K_--called drag coefficient--and Kv--called lift eoefficient_are functions
of the angle of attack i only (for given conditions of tempera ture and pressure). The quantities
K_ and 0_ are connected with the coefficients K_ and. K, by the obvious relations:

B_= arctg _-.- i
(s)

The following figures give a general idea. of the course of variation of the empirical functions
h'_ and 0 for the case of aerofoils moving in air.

Figure 44 gives the curves of K_ and 0' as functions of the angle of attack i for a flat"plate.
The empirical function K, follows very nearly a linear law for the interval of small values of the

lmgle of attack. The ratio AKdAi is larger for small values of i than for large values of the last.
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For increasing values of the angle of attack, starting from zero degrees, /_' at first increases
very rapidly, but afterwards remains very nearly equal to 90 ° for 10o< i < 170°.

In figure 45 is represented the empirical function _ for a piano-convex profile..The line in
dots in that figure corresponds to the flat plate. For a piano-convex profile the angle _ rapidly
reaches the value zero as i increases from zero; afterwards its variation is small. We will
designate by i' the value of the angle of attack for which _ = 0. This angle of attack i' is an
important characteristic of a given profile in relation, to the efficiency which can be expected
from such a profile when used as a blade section. In figure 46 is represented the curve of K
for a piano-convex profile; the curve in dots corresponds to the flat plate.

For most aerofoil profiles the empirical functions K_ and _ have the same course of varia-

tion. In magnitude the fluid resistance R follows a nearly linear law for small values of the angle
of _ttack; for larger values of the angle of attack the variations of R are more moderate. In
orientation, for increasing values of the angle of attack, the line of action of the fluid resistance

• t

very rapidly rises out of the zero plane and afterwards remains sensibly normal to the zero
plane. This general character of variation of the fluid resistance in magnitude and orientation
is of first importance for the properties of blade screws.

The fluid resistance R of an aerofoil is the consequence of very complicated hydrodynamical
phenomena which take place in the fluid around the aerofoil and whose principal character-
istics are:

A. Above the aerofoil we have a decrease of pressure; below, an increase. For most
aerofoils the decrease of pressure above is greater than the increase bel_)w; so that the larger
part of the fluid resistance is due to a suction on the upper surface of the aerofoil.

B. From the tips of an aeroioil run off vortices called tip vortices.
C. Behind the aerofoil the flow is generally not steady, but periodical• When measuring

the fluid resistance of an aerofoil disposed in the wake of another the flow in the wake appears
as deflected downwards.

For more details about all these questions, see the Author's "Introdu¢tion to the Study
of the Laws of Air Resistance of Aerofoils."

o



NOTE IV.

GENERALIZATION AND GENERAL DISCUSSION OF KUTTA'S THEOREM ON CIRCULAI"ION.

The circulation theorem discussed in the present note was first indicated for a particular
case by W. M. Kutta. 1 Soon afterwards, Kutta 2 and Joukowski _ recognized the generality
of the theorem. This theorem is announced as foll'ows:

When a rectilinear and uniform fluid current, having at _nfi_ity the velocity _,.flows normally
to the generatrix of an infinite cylinder of any section, and when the circulation along the contour
erabracing the cylinder and situated in the plane of one of its orthogonal sections has a finite value
1, the ca_npm_ut R_ of the resultant pressure of the .fluid on the cylinder, taIcen along the normal
to the velocity and referred to the unit of length of the last is equal to the product of the velocity V,
the circulation I and the den.dry _ of the fluid: the sense from R_ to V is coincident with the sense
of the circulation.

According to this theorem, the lift experienced per unit l_ngth of the cylinder is expressed
by the fo]_lowing formula

R,=$VI

We shall establish two fundamental and quite general relations from which the circulation
theorem will appear as a particular case.

>" v
d

vX
FIG. 47.

Let us embrace the infinite cylinder considered by any contour disposed in the plane of
one of its orthogonal sections. Let W be the velocity of the fluid at the point (x, y) of the
contour; u and v the components of the velocity W along the axis (see fig. 47); dx and dy the
projections of one element of the contour on the axis. Let us designate by Xand Y the corn- ,
ponen_ of the resultant force of all the exterior forces applied to the fired contained in the
contour considered, and let us apply the theorem of momentum to the motion of the portion
of the fluid considered. We thus have

(1) _ ,-fvdm; X ffifudm
z W. M. Ku_, Illuatrtrte A.eronautische_ttteitungen, I_2.
s W. M. _utta, ,'Sitzungsberichte der KSniglichen Bayerischen Ac_demie der Wissenschaiten," Munich, 1910and 1911.
_._.J_uk_w_ki_"Ge_me_rischeUntersu_hungen_berdieKut_a_ch_Striimtmg_M_k_w_191_191_. See also his course, uAerodynamiq ue,

Paris, 191t_,p. 159.
94
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the integrals being taken around the contour and dm representing the fluid mass which flows
per unit of time through one element of the contour into the exterior space. Let us designate
by _b the current function. By the definition of that function, we have

(2) dm=_d¢

and also

with
5_ b_

(4) U=_y;V= 5x

Substituting in the first of the equations, (1), the value of dm taken from equation (2) we get

(5) Y = f_a_- f_v(_v-,_)
or, identically,

and remarking that
(6) near,+ vdy _ dI

is the flow dI along an element of our contour, we get

(7) r= f_z- f_w,&
and finally, integrating by parts the first term of the second member of that relation, we get

is) Y... [auI- faldu] - fa w,_
which relation holds for any contour and constitutes the first of the relations we wished to get.

Applying that relation (8) to a contour along which

v=0; u= V= const
we easily see that we have
(9) f81d_--o;f_w,d_--o
and consequently Y reduces to
(10) Y=sVI

1 being the circulation around the contour in the direction of rotation of the X axis into the Y
axis.

Following the same method with the second of the equations (1), we get
f

(__) x = f_¢- f_(ugv -_& )

f _(u'dy-uvdx -v2dy + v2dy

(_) • x- f_w'_-[S_,, _- f_,_,,]
_;helast of these equations constitutes the second relation we wished.
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Applying this last relation to a contour along which

v--0; u-- V=const
we easily see that we have

(14) X--0.

all three of the terms of the second member of the relation (13) being equal to zero.
Let us now stop tonote theexactinterpretation of the relations (10) and (14). ._shasbeenindi-

cared, X and Y are the components of theresultant forces of all the exterior forces apphed to the fluid
volume contained in the contour considered. These forces are: first, the pressure of the cylinder
on the fluid, which are equal and opposite to the pressures of the fluid on the cylinder; second,
the exterior pressures on the contour. Let us consider a contour on which v--0; u = V= const,
and which is limited in one sense by two stream hnes sufficiently distant from the cylinder for
them to be parallel to the X axis, and in the other sense by two hnes perpendicular to these
stream lines. Along the stream hnes parallel to the X axis we can consider the Bernouilli
constant as being effectively constant and in consequence the pressure T constant and equal
to the exterior pressure po, the velocity V being constant. Under this condition the component
along'the Y axis of the exterior pressures on our contour will be zero, and Y will represent the
reversed component of the pressures on our immersed cylinder. The expression (10) is conse-
quently equal to the negative lift R, of the fluid on dur cylinder. But if we consider a stream
line which flows near our cylinder, there must be some interior losses through viscosity along
this stream line because each immersed body gives rise to drag. The Bernouilli constant .along

such a stream hne must necessarily decrease, and when we reach the side of the contour parallel
to the Y axis where the velocity V has already taken its original value, the pressure there will
not take its original value Po, the Bernouilli constant having decreased. The relation (14)
consequently expresses the fact that the component along the X axis of the resultant of the
exterior pressures on our contour is exactly equal to the drag, and this holds in the case when
the sides of ofir contour are moved to infinity. In the last case, the exterior pressures tend to
their limiting value Po, but this is not reached, and the integral

f_y--R_

always remains exactly equal to the drag. Kutta and Joukowski, who were the first to estab-
lish the relations (10) and (14), have limited themselves to the consideration of a perfect fluid.

In that case, having no interior losses, the Bernouilli constant has an invariable value along
any stream hne, and relation (14) expresses then the fact that the drag of an immersed cylinder
is zero. But it is absolutely unnecessary to limit ourselves to the perfect fluid, since the theorem
of momentum_ of which equations (10) and (14) are direct consequences, is applicable what-
ever the interior forces acting on the system considered are.

We are thus brought to the general conclusion that for any contour surrounding an im-
mersed cylinder the following general relations must hold:

(15) fpdz-R.= ft_v(udy-v&) = f,_udI- fS w'(_z= [t_uI- f,_Igu]- f,_W:&

(16) fpdy-Rx=fSu(udy-vdx)=f'_W'dY-f_dI=f'_W_dy-[t_vI-fv Idv]

which connect the lift and drag of the cylinder, referred to unit length of the last, with the flow
around this cylinder. In the application of these formulae, three particular cases have to be
distinguished :
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I. The formulae are applied to the contour of the cylinder itself. The contour of the
cylinder being a stream line through Which we have no flow, we must have

Which is the case considered in classical hydrodynamics.
II. The formulae are applied to a contour which consists of stream lines and normal lines

(for the definition of these lines see Note II). In that case the integrals which figure in the
second members of the relations (15) and (16) have to be calculated only along the normal
lin_.

IIL The Kut.ta case

R_= 8VI; R_ f T,d?/

132025--19--7



NOTE V.

THE GEOMETI_.IOF BLADE-SCREW DRAWING.

The tracing of the blade-screw drawing is based on some very convenient conventions,
used in practice for a long time, which, however, as far as I know, have never been stated •
exactly.

For the tracing of a drawing of a blade-screw a reference radi_s has first.to be chosen, and
on this several gu_i_ points are taken through which are drawn axes, which we will call
gu;_ing axes, parallel to the screw axis. Through the guiding axes are passed planes normal
to the reference radius, which we will call sect_o_l p_nes. The plane normal to the screw

axis and containing the reference radius will be called the plane of screw rotation, and the plane
containing the screw axis and the reference radius will be called the mer_dio_l plane. In
principle the reference radius may be chosen arbitrarily--it is only necessary that the sectional
planes cut the screw blade--but it is convenient for all the guiding axes to pierce the screw-
blade as far as possible. As for the number of guiding points, it is sufficient practically to
adopt from four to ten of them.

The drawing of a blade screw may be established either by plane blade sections or by
cylindrical blade sections. The method adopted depends upon the process of screwmanu-
facturing used. For some blade screws the difference between both methods of screw drawing
is negligible. If it is a drawing by plane blade sections that we wish to have, it is the blade
section by the sectional planes that has to be considered. If it is a drawing by cylindrical
sections that we wish, we then have to pass cylindrical surfaces, having for axes the screw

axis, going through the guiding points and. tangent to the sectional planes, and to consider
the sections of the blades by these cylindrical surfaces, developed in the sectional planes. All
of "the following relates to both methods of screw drawing.

Figure 48a gives a general view of a screw blade whose reference radius OR is supposed
to go through the point of the blade farthest from the screw axis and is entirely contained in
the lower side of the blade. For the sake of clearness in the drawing only the guiding points
Pl and P2 are represented, through which are traced the guiding axes aI a t' and a_ a2'. The
plane blade sections are designated by st st' and s2 s2', and the cylindrical blade sections by
cl c_' and c2 c2'. It is assumed for simplicity that the cylindrical blade sections developed in
the sectional planes coincide with the .plane blade sections. Let us extend the chords of the
blade sectiorts considered and take on the intersections of the sectional planes and the screw
rotation plane lengths such as Pt lt; Pt lt_; P2 l_; P2 Z:' ....... , respectively, equal to rt, 2_rt,
r2, 2_r 2 ...... ; the quantities r_ and r2 being the distances of the guiding points from the
screw axis. The chord of each section will cut off, on the perpendiculars to the screw rotation

plane through points such as l' and l, lengths respectively equal to H .and H/2¢ designating

by H the constructive pitch of the sections considered. _
First generation of the screw drawing.--The sectional planes, containing the blade sections,

are turned through an angle of 90 ° around the guiding axis in such a way that the heights
HJ2_, HJ27r, etc., come on'the screw axis. The sections s_ s_'; s2 s_' _......... will take the
positions t_ tx'; t2 t2' .......... and will all be brought into the meridion'al plane. In figure

When a guiding axis does not pierce the blade, it is the extension of the chord of a section that meets that axis: it is from this last point that
the construction indicated above has to be made in order to find the pitch.
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48a it has been assumed that we have to do'with a blade screw'of constant constructive pitch,
- and thus HI/2_ = H2/2_ ........... In such a way is obtained the screw drawing, represented

on figure 48b, whose geometrical properties are evident. Thus when we go from the sections
of the blades to the sections on the screw drawing the projections al a/; as a2' of the blades
on the mel_dional plane remain unchanged, but tlle projections of these same blade sections
of the screw on the _crew rotation plane are turned through 90°. (See fig. 48a.) The screw
drawing allows one to see at once all the blade dimensions. If we project, on the screw draw-
ing, each section on the corresponding guiding axis we will get the projection of the blade on
the meridional plane; if we project these same sections on Jthe reference radius and turn these

' projections through 90° we will get the projection of the blade on the screw rotation plane. (See
4sd.)
The screw drawing is generally completed by conventional representation of the distribu-

tion of the maximum blade thickness along the blade. (See fig. 48c.)
By aid of the screw drawing, one can directly obtain the templates necessary for screw

manufacturing. It is sufficient for that purpose, to trace on the screw drawing two straight
lines parallel to the refers,nee radius. On figure .48c templates, one above and one below,
have been traced. The templates co_esponding to one blade face fixed normally to a board
on which is traced the projection of the blade on the screw rotation plans will give a space
picture of the blade face (See fig. 48e.) If we make use of cyhndrical blade sections, the tem-
plates have first to be bent according to the corresponding radii.

In figure 49 is represented the general case of the screw drawing; the screw blade is assumed
to have a general curved-do_l_ shape. All the details of this drawing are self-evident.

Second generation of t_e screw drawinq._Instead of rotating the sectional planes, we can
bring them to coincide by a translation parallel to themselves, effected in such a way that
the bases l_, 12...... of the height HJ2_, H2/2_ ........ described .in the screw rotation plane
a straight line going through the screw axis and inclined at 45° to the reference radius (See
fig. 50.) This construction, as well as the foregoing, gives directly the connection between
the blade screw and the screw drawing. In figure 50 "it has been assumed that the constructive
pitches of the different sections increase from boss to blade tip.



NOTE VL

SOME CRITICAL RF_MARKS ABOUT THE BLADE.SCREW INTEGRAL THEORY.

As has already been mentioned in the introduction to the present memoir, the general
blade-screw theory can only be an integral theory. In the present note I will We the general
outlines of the blade-screw integral theory. This will allow one to judge better the blade-
screw differential theory developed in the actual memoir.

In its most general form the blade-screw problem can be stated as follows: Let us con-
sider a blade screw rotating in a fluid with an angular velocity _2around its axis and advancing
with a speed V along that axis, and let us suppose, for one moment, our blade-screw problem
to be fully solved; that is, let us assume that we know the exact distribution of the partial
thrust AQ and the partial torque hC along the screw blades. Two sides of the problem have
to be distin_ox_ished. First of all, knowing AQ and AC as functions of r we have to find the
exact flow around the blade screw. This will be the hydrodynamical part of the problem.
Afterwards, having found the flow and thus knowing exactly the stream running on the screw
blades, we can seek for the dimensions and shape which have to be given to the blades, so that

• they realize the assumed system of partial thrust hQ and partial torque AC. This is the tech-
nical part of the problem. When the assumed system of hQ and hC lie in a practically possible
range, and when we know the flow around the screw, it is always possible to give to its blades
such size and shape that, for example, the assumed aQ will be realized, but the AC necessary
to produce the "assumed AQ can come out different frum the assumed values. Xll depends
upon the losses which wiU take place. Under such conditions we will be brought to modify
the first assumed system of AC, recalculate the flow and introduce changes in the size and
shape of the blades, and so step by step approach nearer to the conditions of the problem.
In this way, by a successive determination of the flow and calculation of the size and shape
of the screw blades, redetermination of the flow and recalculation of the blades, we can reach
an agreement between the hydrodynamical and technical parts of the blade-screw problem.
The foregoing constitutes the most general statement of the blade-screw problem.

Let us consider the hydrodynamical part of the problem. We will make only two as-
sumptions: We will neglect the periodicity of _he velocities in the slip stream and neglect the
interior losses between the sections S_So, SS and S'S', S"S". These losses are very small in
comparison with the other losses which occur in blade-screw working; and corrections for the
periodicity of the slip stream velocities can always be introduced post factum. After the de-
tailed explanations which were given in the lirst chapter of this memoir, I will allow myself
to be very brief in the following statement of the general scheme of the most general blade-
screw theory:

Condition of flow continuity in the slip stream
(1) ,XM f _AS( V + v) = _AS" (V + v")
From which follows

AS " V+ v" rdr
(2) h_ = V--_ = r_d-r"

We also have

(3) _I = AMg = _( V+ v)r _
(4) AI= AMr _'-'= _AS( V+ v)r"
and

(5) _ =:r""
D)3



104 ANNUAL REt'ORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

The theorems of momentum and moments of momentum applied to the slip stream lead
to the relations
(6) Q= _a My"- r_AS"(po- p ")= F
(7) G= _aI"oJ" = ZAI_' = CF
and also
(8) aQffiamy" - as" (po- f)
(9) AO-- AI"o_"ffiAIa,'
so that

(10) Qfy, AQ; O--ZaO
and we also have

• AQ ,
(11) apf_=p -p

In the limiting ease the sections SS and S'S' are considered to be very close together.
According to Note II, the pressure distribution in the section S"S" is given by the rela- .

tions

(12) p".=p"e-l-_ /_"'r"dr"

(13) iu°=/_%+ _ f(_"2r"dr"j0

(14) Po- ld'c -- _fr 7"2r" drn •

where p"c is the pressure, in the center of the section S"S" and R" the radius of that section.
Let us apply the Bernouilli theorem to one stream line of the slip stream. In the in-

draught the Bernouilli constant, which we will designate by B, has the value
_V 2

(15) Bffipoq 2
When we cross the area swept by the blades of the screw the Bernouilli constant undergoes
an increase equal to

Sr2_pz
(16) hB--hp4 2

so that in the outdraught the Bernouilli constant has for its value

AB . _V2 aQ _r2_'_(17) B+ _Po+-_ +_-_'_ 2

Consequently for the section S"S" we must have

B+ABf'po+_T_+_+_(V+v)v"____ --_(To-pAS" ") =P" + _(V+v")22 __r"*_'2(18)

or, after self-evident simplifications,

_v"(v-_)=_'(,#'- ' " AS",,, )-(p.-p )(! --Z-_- )(19)
\ --/ --

This last relation is the fundamental characteristic equation of the flow in the slip stream of a
blade screw.

In the hydrodynamica] part of the blade-screw problem the fundamental variable is r
D

0_r<

The data given are the functions _Q and AC. The unknown functions, which have to be found
as functions of r, are

00t_ V_(20) r", ])", _", v" e
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This makes six unknown functions, for the determination of which we have the six equations

r"I'I II_ It II
(21) ? ---8 _ r dr

Jt w

AO
(22) _'= 8(V+ v)AS#

(23) - t, , r2==W ?n--_ o.

_-_AQftL?=8(V+_)v"a,-,¢'u. ,,(24) - -A-_-tPo--P )

V+v° rdr
• (25) -V/_ =r,-_

with A8 = 27rrdrand A8 _= 2rr" dr _

The foregoing system constitutes the fundamental system of equations which fully deter-
mines the flow around the blade screw in the most general case. Owing to the integral rela-
tion (21), the solution of this system of equations can be found only by a method of successive
approximations, and thus is very laborious. Under such conditions it is natural to seek for some
assumptions, which being very close to the real conditions, could simplify the foregoing system
of equations. For that purpose let us discuss the variation of the second member of the equa-
tion (19), which we will designate by G.

(26) G = _ (o_ -o')-- (P°--Pn) \ -- A--'_-')

For the tips of the blades we have
r_= R _ and p"= po

and consequently
_r2_ '

(27) --= --T- (_"--_')
but as _" > _', we will have

(28) G> 0 and v" < 2v
For the boss we have

r_-_ 0; p_=i_nc
and thus

(
= --_-)(29) a -- (Po-?nc) \1

and consequently
(30) G < 0 and v _> 2v

Thus G is positive at the tips and negative at the boss. Consequently, between tips and boss
there must necessarily exist a blade section for which G= 0 and consequently rigorously
(31) , v _= 2v

On the other hand, it is easy to see that starting from the blades sections where v"= 2v
the quantity G increases generally inmagnitude to tips and to boss. But at tips and boss G
is still a small quantity. In fact, at the tips G= ½8rzo/(__-_'), but as _' has generally a small
value and the difference (_-o_') is negligible, so far as the radial velocities can be neglected,
G comes out to be small. At the boss G---(_o-P_c) (1-AS_/AS), but the pressure dif-
ference (Po-P"_) being generally negligible, owing to the fact that _ is small, and (l -AS"/AS)
is in magnitude smaller than the unity, G at the boss is also small.



106 ANNUAL REPORT NATIONAL ADVISORY COi_iTTEE FOR AERONAUTICS.

Thus it is at boss and tips that the difference between v" and 2v reaches in magnitude its
biggest values, but still here this difference is small.

We are thus brought to the conclusion that in the most general case the flow in the slip
stream is such that very nearly
(31) v" --2v
for the whole cross section of the slip stream. This last relation expresses the fact that the

rotation of the fluid in the slip stream has only a very slight influence on the translater_y motion
of the same.

After we have convinced ourselves that the relation (gl) holds, it is easy to see that to a
good approximation the flow conditions come out to be similar in the section SS and Su,.¢/n.
This fact is a direct consequence of the relation (31) for a blade screw working at a fixed point;
in other cases for the similarity of flow conditions it is only necessary for v to be small relative
to V or to have its variations small along the slip stream cross section, as has been shown in the
first chapter of this memoir. We thus can consider, remaining still close to real conditions, that

V+v" rdr r = AI ,.,"
(32) _-_-_= --_-_-_-= r_-'_ _ _--_= _-i-'_-= --_

and consequently
dr r

(33) _-_=_ or r _ --or

where c is a constant.

It will now be easy to see from the relation (26) that the condition G-- 0 for any value of r
between r _ 0 to r-- D/2 can only be satisfied with

(34) _' =_" and ion =po

for the whole cross section of the slip stream.
We are thus natura.lly brought to the hypothesis made in the first chapter of this memoir.
To evaluate, however, the influence that the pressure, difference in the section S*S n can

have on the blade-screw working, one can-proceed as follows: As _ is generally a small quan-

tity, let us neglect its variation along the slip stream cross section. Under such conditions,
from the relation (14) we will find

,,/"(R."'- r"')
P=-P" =_ 2

or

n $ r*=c°_/R_= 1)po-p = /

and on aocount of the relations (32) and (33)

The equations (8) and (9) can thus be written

r_'i[D_ 1)(36) AQ = $AS( v+ v)v _ - _hS _ \_--_ - .,

(37) A0= $AS( V+ v)r2_ '

Comparing now, as in the first chapter, these last values of AQ and AC with those obtained
by the direct consideration of the action of the stream on the screw blades, that is, bringing the
hydrodynamical part of the b]ade-screw problem into agreemen_ with the technical part, we find

r=ca'=/ D= 1)_aS(V +v)v"-,_,_8---5-{,-£p- =nkC_L4.W'cos (_+_)
_AS(V+ v)r2_ ' = nrk_Ai W =sin (_-I- _)



TltE GENERAL THEORY OF BLADE SCREWS. 107

Proceeding now with these equations exactly as was indicated in the first chapter, we will finally
find

e_ '" ( D _(38) V+v 4(V_l_v)2\_-_-l/=az
p_z _,_n ,rOj#

(39) 2(17+v--------_--az tg (_+_)= 2(V+_")=2(V+2v)

These!ast equations are fully similar to the equations (46) and (47) of C.hapter I, and only con-
rain the complementary term

1)2
r2to'2 (.D 2 1)ffia2z2tga(_+_).(_.__l)4(v+ v)2\_-_-

which expresses the influence of the decrease of pressure in the section 8"8" produced by the
rotation of the fluid in the slip Stream. But as this complemdntary term appears to be of second

order compared with az tg(_+_), which is a very small quantity in most blade-screw applica-
tions, it comes out to be negligible.

We are thus brought to the conclusion that, from the most general standpoint, the only
system of equations for the blade screw which can be reasonably adopted is the one established
in the first chapter of this memoir.

The following has still to be noted. As far as the race velocity _ is concerned, exactly
speaking we have

_P

(41) _---

In fact, by its definition _AC is the work communicated in a unit of time to the fluid by the
blade element considered, in its rotational motion. And this work must be equal to the corre-

sponding rotational kinetic energy of the fluid; that is, _AC_-½ AI_ '2 because the corresponding
wolk vAQ of the "thrust has its equivalent in the increase of pressure Ap produced, when cross-
ing the area swept by the screw blades. But as 5(7-- al_' we have

o_aO= oJo_'AI= ½AI_'2
and thus

Off

But when the radial velocities are neglected we have oJ°_,.,', and consequently
oj et

(42) . _ =_ -2

This gives for _ a. slightly increased value. •
When we neglect the decrease of pressure in the section.S_S ", this brings with it a slightly

increased value for AQ_ but when simultaneously we use for _ the value (42) we obtain a certain

correction of the neglect of the decrease of pressure, because a slightly greater value of _ de-
creases slightly the angle of attack i, and thus decreases slightly AQ. Under the hypothesis
made the value (42) has also to be adopted for _, in order to have a correct energy balance,
because when the decrease of pressure in section S'S _ is neglected and thus the translational

motion in the slip stream considered independent of its rotational motion we have

vaQ = ½AMy "_

and consequently we have to take
_AG= ½AI"_"'

that is, _ = 2_. All these last remarks concern only differences of second order.
The foregoing critical discussion of the blade-screw problem, from the most general stand-

point, shows us the value of the system of equations established in the first chapter of this
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memoir. On the other hand, how convenient this system of equations is in its practical use
follows in full evidence from the results obtained in the present memoh'.

I will also remark that from a practical standpoint the square of ¢z can be neglected in
many of the formulae of the actual memoir.

I will finally give a numerical evaluation of the magnitude of the departure from unity
that the ratio 2v/v n can reach.

Introducing, in a first approximation, the value (35) of the difference of pressure (Po-P")
in the relation (19), we get

and, taking into account the relations (32) and (33), we find

(") (I.o)Iv D=_'= (l--e2) 2_-i-0,25 E 2 ,25(43) _- 1 ...... "-- Vn2

D2co'_ (1 - e_)
with E-- _ • c2

To find the order of magnitude of the ratio D_'2/v"" we will Use equations (48) and (49) from
Chapter I. Dividing (49) by (48), we find

-_-_------- _=4(1 +az) = tg _ (_+_)

Remembering that H ffi2Trtg _ and considering _ _--_0, we get

O"_ '2 _ 4(1 + az)'H 2
v"' -- _aD"

Concerning the ratio(I__)/_a,we have (I- _a)/c'__O,05when advancing and (l-_)Aa_l at

a fixed point, so that the quantity E comes out to be of the following order of magnitude: For
a propulsive screw with az--0,1, tt/D__0,75 and (1-c2)/c2__0,05 we find

.E'_--0,01

For a helicopter or lifting screw we have az_ 1; (1- c3)/c2_------1but necessarily H/D small. If
we take H/D_0,3 we find

E__ 0,1

The quantity E reaches its greatest value for a propulsive screw working at a fixed point. With
az_--I ; H/D_--0,75; (1 - c2)/c_--_1. We find

E_--0,8

Using the second of these last values we get

2v (r2_0,25)v-_--_--1+0,1 2_2

For r = 0 and r_-D/2 we find 2v/v"_._0,975 and 2v/v"_--l,025; for values of r between r-_ 0 and

r= D/2 the departure of 2v/v" from unity is still less; for r/D_-O,354 we have 2v/v'ffi 1.

The departure of 2v/v _ from unity thus does not generally reach 3 p. ,c. (and this only at
boss and blade tips), and is consequently fully" negligible. For a propulsive screw when ad-
vancing with E--0,01, it is absolutely negligible. Only for a propulsive screw working at a

fixed point it may reach, at tips and boss only, 20 p. c., which is still negligible in a first approx-
imation. We thus see in full evidence _hat the relation

V" ----2_,'

although being in the general case only an approximate law, constitutes, however, a remark-
able approximation.

GEORGE DE BOTHEZAT.
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